找最大公因数教学反思教学反思8篇

时间:2023-04-19 10:01:52 分类:教学工作

编写教学反思可以提高我们的教学质量,会写教学反思不是一件值得炫耀的事情,最重要的是符合自己实际的教学情况,以下是加分文档网小编精心为您推荐的找最大公因数教学反思教学反思8篇,供大家参考。

找最大公因数教学反思教学反思8篇

找最大公因数教学反思教学反思篇1

这部分内容是在学生掌握了因数、倍数概念的基础上进行教学的,主要是为下续学习约分作准备。教材先创设了一个剪纸的问题情境,从实际生活中抽象出概念。这样处理的好处便于揭示数学与现实世界的联系,有利于学生理解公因数、最大公因数的概念及现实意义,也有利于培养学生的数学抽象能力。但是将解决问题与概念引入结合在一起,教学上自然会有一定的难度,所以我将主题图的自由探索与尝试选正方形的大小来剪。适当降低了一些难度并提高了教学的效率,最后的效果还是不错的,很容易就引入了公因数和最大公因数的概念。

在现行《课标》中有关求最大公因数的要求是:“能找出两个自然数的公因数和最大公因数”。重在“找”,而现行教材的分子分母都比较小,学生熟练了以后都能准确的进行约分,关键还是在练习的力度上多下功夫。

融入生活实际。我把找公因数的问题融入实际生活情景中,比如:“有两根绳子,一根长12米,另一根长28米,要把它们截成同样长的小段,而且没有剩余,每段最长应是几米?一共截几段?”这时学生理解了求最大公因数的方法和作用,就不难解决这一问题。结合生活实际,使学生真正体会到数学学习的价值,并清楚地知道“为什么学”,真正做到了生活知识数学化。

找最大公因数教学反思教学反思篇2

本节课,我从学生已有的知识和经验出发,精心设计一个童话情境,激发了学生的学习欲望。先让学生动手操作、自学讨论,帮助王叔叔选择地板砖。再思考探索正方形地板砖的边长与长方形地面的长、宽之间的关系。然后用问题的形式,通过复习16和12的因数,让学生再找两个数的因数、找两个数的公有的因数、找两个数公有的因数中最大的因数的过程中,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系,同时揭示公因数和最大公因数的概念。

总之,我在教学的过程中,不但复习巩固旧知,让学生在不知不觉中学会了新知。而且还让学生带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释。此过程中我还注意了鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,对于有困难的学生,我从方法上作进一步指导,小组长帮助,生生互帮等。以“学生是学习的主人,教师是数学学习的组织者、引导者与合作者为主。培养了学生动手操作的能力,使他们在愉快的学习氛围中学会了本节课的内容。

找最大公因数教学反思教学反思篇3

?标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。

对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。

一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。

?公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:

“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?”

学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。

二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛

“对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?

三、让学生进行独立思考和自主探索

通过学生的猜测,我把学生的提出的问题进行了整理:

(1)什么是公因数与最大公因数?

(2)怎样找公因数与最大公因数?

(3)为什么是最大公因数而不是最小公因数?

(4)这一部分知识到底有什么作用?

我先让学生独立思考?然后组织交流,最后让学生自学课本

这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。

找最大公因数教学反思教学反思篇4

这节课是在学习了公因数和最大公因数之后教学的,在实际教学中我发现学生不能灵活利用最大公因数的知识解决实际问题,有的同学一看到求最大、最多、最长是多少,便不假思索,直接求它们的最大公因数,至于为什么是求最大公因数,有的同学不理解,或是知其然而不知其所以然。基于此,我设计了这节课。在教学中,我努力做大了以下几点:

1、借助操作活动,让学生形成解决问题的策略。在教学中,我以学生感兴趣的六一节活动贯穿始终,让学生在积极、欢愉的氛围中学习。通过给学生提供具体的材料,让他们利用已有的材料,剪一剪、画一画、折一折、想一想、算一算,用不同的方法来解决问题。从动手操作中理解要解决这个问题,实质上是求已知数量的最大公因数,并结合课件演示明确为什么是求最大公因数。提升了学生的思维层次。再通过后面的尝试应用,练一练,灵活应用等环节进一步明确思路。学生在解决问题的过程中获得感悟,初步形成解决此类问题的策略。

2、预设探究过程,增强学生的主体意识。尝试应用环节更是学生自主探究的广阔平台,我抛出问题后让学生独立探究。为了解决问题,学生充分调动已有知识经验、方法、技能,八仙过海各显神通,找出各种求正方形的边长最长是多少的方法,从中再次体验到要解决这个问题实质上还是求已知数量的最大公因数。整个教学过程学生能主动的建构知识,而不是简单模仿,充分体现了学生是课堂学习的主人,课堂是学生学习的天地。

3、教学中我充分发挥小组合作学习能力,给学生充分的交流与研究时间,让学生在交流展示中明确解决此类问题的策略,达到把复杂的问题变得简单,把简单的问题变得有厚度。

找最大公因数教学反思教学反思篇5

分析基础知识:本单元是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。教材分两段安排教学内容:第一段,认识公倍数、最小公倍数,探索找两个数的最小公倍数的方法;第二段,认识公因数、最大公因数,探索找两个数的最大公因数的方法。此外,在本单元的最后还安排了实践与综合应用《数字与信息》。

一、借助操作活动,经历概念的形成过程。

以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。本单元教材注意以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在这节课上,让学生按要求自主操作,发现用边长6厘米的正方形正好铺满长18厘米,宽12厘米的长方形。在发现结果的同时,还引导学生联系除法算式进行思考,对直观操作活动的初步抽象。再把初步发现的结论进行类推,发现用边长1厘米、2厘米、3厘米6厘米的正方形都正好铺满长18厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、3、6这些数和18、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

二、预设探究过程,增强学生主体意识。

例3中,教师宣布游戏规则后,放手让学生动手操作,直观感知——思考原因——想象延伸——讨论思辨——明确意义。例4更是学生探究广阔的平台,教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,八仙过海各显神通,找出了各种求“12和18的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

三、重视方法和策略的渗透,提高学生学习能力。

课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。所以在教学找公倍数或公因数时,应提倡思考方法多样化。例4教学中,学生得出了三种方法来寻找12和18的公因数和最大公因数。(当然到底是三种还是两种有待商榷,不过在这里,为了便于比较我们姑且称之为三种吧)这就存在了一个方法优化的过程,哪一种方法会更简单?通过对比,大多数学生赞同方法二。通过讨论,引导学生以后解决此类问题时可以多运用较好的方法二。在这中间教师注意到了引导、小结、鼓励,师生共同得出结论。

复习题中回顾了四年级知识基础、列举法和标记法,在例3中,学生思考“还有哪些边长整厘米的正方形纸片也能正好铺满这个长方形?”时就有了基础。例4中,学生也知道用列举法和标记法来解决问题。

特别是用集合图来表示因数和公因数的教学值得一提。有趣的游戏,预料中的争执,恰到好处的体现了图的妙用,图的填法比一步步教学生如何填更有效,也更不易遗忘。练习五,第一题在填完集合图后对公有因数和独有因数意义的的提升,为下面的学习作了伏笔。体会初步的集合思想。

练一练,并没有局限于画画△、○,找找公因数和最大公因数,而是进一步指导学生观察,发现公因数都比小的数小(18和30中,18是小的数),在18的因数中找公因数的确更快、更好些。

所以请老师们在平时的教学中也去分析、思考,把握例题和练习中每个需要提升之处,在课堂中时时注意方法和策略的渗透,较好地用实这套教材。

找最大公因数教学反思教学反思篇6

?公因数和最大公因数》这部分内容是在学生理解因数与倍数的相互关系,会找1~100的自然数的因数,并且在学习面积概念时积累了“密铺”的活动经验开展教学的。对于《公因数和最大公因数》这样一节概念课的教学,其教学重、难点我认为就是对“公”字意义的理解,也就是如何体验这个数既是一个数的因数,又是另一个数的因数,才是两个数“公有”的因数。为了突出本节课的教学重点、突破教学难点,结合我们本学期的教研主题“如何设计有效的教学活动,达成教学目标”,我主要从以下几方面入手来尝试教学:

一、重视活动体验,让学生经历数学概念的形成过程。

第一次猜想:一个长方形,长4厘米,宽2厘米。如果用同样大的边长是整厘米数的正方形来摆,刚好摆满没有剩余,可以选边长是几厘米的正方形?让学生带着自己的思考去操作验证,在操作中体会“同样大小的正方形”、“摆满没有剩余”,初步感知正方形既要把长方形的长摆满没有剩余,又要把长方形的宽摆满没有剩余。

第二次猜想:现在把长方形变大,长6厘米,宽4厘米,同样的要求,这次正方形的边长可以是几厘米?学生可以熟练地操作验证,在活动体验和交流中进一步感知选择正方形时既要保证长方形的长摆满没有剩余,又要保证长方形的宽摆满没有剩余。

第三次猜想:继续变大,长18厘米,宽12厘米长方形,还是同样的要求,用同样大的小正方形来摆,刚好摆满没有剩余,这次可以选边长是几厘米的正方形呢?学生继续操作验证。这时学生已经有了前两次的操作感知,积累了充分的活动经验,这些活动经验可以支撑他们去推理、想象,找到能“摆满没有剩余”的本质,从而从整体感知正方形边长的规律。

然后,发挥教师的主导作用:“我们前后共摆了三个长方形,得到了黑板上的这些数据。仔细想一想,这些正方形的边长和什么有关?有怎样的关系呢?”引导学生观察数据,发现规律,引出公因数和最大公因数的概念。

通过创设以上教学活动,让学生在活动中实实在在地经历了公因数产生的过程,积累丰富的'活动经验,充分体验公因数的意义。

二、借助几何直观,增进学生对概念意义的理解。

通过上面的操作体验和思考认知,学生认识了公因数和最大公因数,又经历了找公因数和最大公因数的过程,学生能感知“因数”、“公因数”、“最大公因数”这三个概念之间存在着一些联系。为了帮助学生深入地理解概念,提出问题:“对比这三个概念,现在你能说说它们之间的联系与区别吗?可以选其中两个说一说。”引导学生进一步地思考。这时学生交流:“‘因数’是一个数的,而‘公因数’是两个或两个以上的数公有的”、“‘最大公因数’首先它也是‘公因数’中的一个,而且是‘公因数’中最大的一个。”根据学生的交流,我通过课件,借助韦恩图形象直观地演示了“因数”与“公因数”、“公因数”与“最大公因数”之间的关系,增进了学生对概念意义的理解。

三、通过实际问题,沟通数学概念与现实世界的联系。

在学生充分理解区分了“因数”、“公因数”、“最大公因数”三个概念之后,提出问题:“一根彩带长16分米,如果要截成小段来装饰包装盒,要求每段一样长且剪完没有剩余,每段可以是几分米?(选整分米数)”学生想到:这是个用因数的知识解决的问题,求每段可以是几分米,也就是求16的因数。这时,引导学生改编成一个用公因数来解决的问题,学生首先想到了

少需要两个数据,于是有的学生想到可以改编成:“两条彩带,一条16分米,一条12分米。把它们截成同样长的小段且没有剩余,每段可以是几分米?(选整分米数)”这样的问题。在学生思考的过程,既是在进一步理解概念的意义,又找到了“公因数”、“最大公因数”概念的现实意义,培养了学生的数学抽象能力。

一节课下来,我发现学生是最棒的!在不断地实践探索中,他们的认识不断提升,我仿佛听得到他们思维拔节的声音。

当然,仔细琢磨,这节课还有很多可圈可点之处,如:

1、在三次操作之后,找正方形边长与长方形的长和宽有什么关系环节,有的孩子不能用数学的眼光去观察、去思考,还停留在操作上,这就说明作为老师,在这两个环节之间没有为孩子搭建起合适的桥梁,没有帮孩子找到一个好的思维支点。

2、因为操作感知时间较长,在本节课的第二个知识目标——找公因数和最大公因数的方法环节就没有充分的时间将孩子的各种方法展开交流,也是个小小的遗憾。

带着原有的思考我们做了如上尝试,然而一节课的时间是有限的,个人业务素养也有待提高,所以没有做到面面俱到。好在一节课的结束并不意味着思考的终止,我又带着实践中的新问题上路了。期待着思考的路上,能得到更多领导、同行们的指点与批评!

找最大公因数教学反思教学反思篇7

一.教学设计学科名称:

北师大版数学五年级上册《找最大公因数》

二.所在班级情况,学生特点分析:

我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。

三.教学内容分析:

教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。

四.教学目标:

知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

五.教学难点分析:

教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。

教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

六.教学课时:

一课时

七.教学过程:

(一)复习

师:出示3×4=12,( )是12的因数。

生:3和4是12的因数。

(二)探究新知

1、认识公因数和最大公因数

(1)师:除了3和4是12的因数,12的因数还有哪些?

生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。

师:要找出一个数的全部因数,需要注意什么?

生:要一对一对有序地写,这样才不会遗漏。

师:照这样的方法,请你写出18的全部因数。

生独立写后汇报:18的因数有:1、2、3、6、9、18

(此时出示集合图)

师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。

生做后汇报师板书于圈中。

(2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。

生找出12和18相同的因数有:1、2、3、6

师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。

师:这里最大的公因数是几?

生:最大是6。

师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。

板书课题:找最大公因数

(此时出示集合图)

师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论

(生分组讨论)

汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。

师:请大家完成这个题。(生做后订正)

2、探索找最大公因数的方法

(1)列举法

刚才我们找最大公因数的方法叫做列举法。(板书:列举法)

请大家用这种方法找出下面每组数的最大公因数。 9和15

(2)利用因数关系找

师:请大家翻到书第45页,独立完成第一题。

生汇报:

8的因数: 1、2、4、8

16的因数: 1、2、4、8、16

8和16的公因数: 1、2、4、8

8和16的最大公因数是 8

师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?

生独立思考后分组讨论。

生汇报:8是16的因数,所以8和16的最大公因数就是8。

师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)

练习:找出下面每组数的最大公因数。 4和12 28和7 54和9

(3)利用互质数关系找

师:请大家独立完成第二题。

生汇报:

5的因数: 1、5

7的因数: 1、7

5和7的最大公因数是 1

师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?

生独立思考后分组讨论。

生汇报:5和7都是质数,所以5和7的最大公因数就是1。

师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)

练习:找出下面每组数的最大公因数。 4和5 11和7 8和9

(4)整理找最大公因数的方法

师:今天我们学习了用哪些方法找最大公因数?

生:列举法,用因数关系找,用互质数关系找。

师:我们在做题时,要观察给出的数字的特征选用不同的方法。

(三)练习

书46页3、4、5题。生独立完成,师巡视指导。

(四)全课小结

这节课你有什么收获?

八.课堂练习:

在括号里填写每组数的最大公因数

6和18( ) 14和21( ) 15和25( )

12和8( ) 16和24( ) 18和27( )

9和10( ) 17和18( ) 24和25( )

九.作业安排:

完成练习册上的习题

十. 附录(教学资料及资源):

1、教师用书:北师大版五年级数学上册

2、数字卡片

十一. 自我问答:

短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?

教学反思:

本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。

在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。

找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。

找最大公因数教学反思教学反思篇8

本课是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。

第一节课,根据教材是以铺地砖的生活实际作为切入点,要铺整分米数的地砖而且要求要整数块,引入了求两个数的公因数的必要性。教材主要的教学方法是先分别求出两个数的因数,并按照从大到小的顺序排列出来,从而找出两个数的公有因数,称为这两个数的公因数,其中最大的数就是这两个数的最大公因数。通过例1的教学后,我引导学生总结出求两数的公因数以及最大公因数的方法。练习时发现部分学生还是容易在找一个数的因数的有疏漏,导致求出来的公因数和最大公因数出错。

第二节课,我引入了求最大公因数的另一种方法,分解质因数法,介绍用短除法求两个数的最大公因数。这种方法学生掌握起来比较容易,但也发现部分学生没有除尽,最后的商不是互质数,导致找错最大公因数。

不过相对于第一钟方法,第二种方法在书写上更简便,学生解题时还是比较容易理解,写起来也比较简洁,大部分学生在求几个数的最大公因数时还会选择第二种方法。当然,我还是鼓励学生选择自己喜欢的方法,关键是能理解,懂应用。

《找最大公因数教学反思教学反思8篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭