面积4教学反思5篇

时间:2023-01-20 14:07:33 分类:教学工作

教学反思是老师对教学实践分析的一种文字载体,撰写教学反思可以提高我们的教学科研意识,加分文档网小编今天就为您带来了面积4教学反思5篇,相信一定会对你有所帮助。

面积4教学反思5篇

面积4教学反思篇1

教学《长方体的表面积》这一课,我主要想通过学生的操作,让学生理解表面积的概念,初步掌握长方体表面积的计算方法,会用求表面积的方法解决生活中的一些简单问题。

课堂中,在学生认识了表面积的概念后,结合例题,我引导学生求长方体的表面积时,提出问题:“你能想办法求出这个长方体六个面的总面积吗?试着做一做”。不一会儿,两种方法写在了黑板上,学生列出了这样的算式:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2和(0.7×0.5+0.7×0.4+0.5×0.4)×2,我顺势引导学生得出长方体表面积的计算方法。这时,史渊博站起来说:“老师,还可以这么列算式:0.7×0.5×2+(0.7+0.5)×2×0.4”。

说实话,这种方法我们在计算圆柱体的表面积时经常用到,而对于计算长方体的表面积时,我一直认为孩子们不会想出这种方法,所以过去几次教学这一课时从未介绍过。既然今天孩子们提出来了——这种预设之外的生成性资源,那我必须顺势开发利用。我接着提出:“这种方法对吗?”孩子们面面相觑,不知如何判断。“你能给我们讲讲是怎样想的吗?”看到孩子们如此的表情,我又继续提出问题。“这个长方体包装箱,先做两个底面,需要0.7×0.5×2平方米硬纸板,而长方体前后左右四个面展开是一个大长方形,这个大长方形的长是长方体两个长加两个宽的和,宽是长方体的高,所以这四个面的面积是(0.7+0.5)×2×0.4,把两个底面加四个面就是这个长方体六个面的总面积。”史渊博一口气说出了自己的想法。“是这样子吗?那我们动手将手中的长方体剪剪看吧。”学生动手将手中的长方体上下两个底面剪去,其余四个面沿一条高剪开,发现的确是长方形,而这个长方形的长是底面周长,宽是长方体的高,这种方法自然很容易理解了。这样一个教师认为不适合对学生讲的问题方法,随着学生的提出迎刃而解了。

课后,细细琢磨,教师只不过是让学生说出了自己的想法,而实际是将学习的主动权交给了学生,结果创造了水到渠成的事。看来,学生是金子,只要我们真正把主动权还给他们,允许他们用自己的大脑思考,用自己的嘴巴表达,就能激起孩子们思维的火花,发出耀眼的光芒,我们的课堂也就更加精彩!

面积4教学反思篇2

由于暑假在家,我就备了这一课。所以一开始我的教学目标还是很明确的:

①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。

②在操作、观察、比较的过程中,渗透转化的思想, 发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。

开始,先复习长方形面积的计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的沿高切下,平移,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。

面积4教学反思篇3

?长方体和正方体的表面积》是在学生认识并掌握了长方体和正方体特征的基础上学习的,是本单元的重要内容。

这节课是学生学习立体图形计算的开始,为了使学生更好地建立表面积的概念和计算方法,我通过演示课件,加强动手操作和实物演示,按照“创设情境----动手操作----自主探究----总结规律”的教学流程进行教学设计。

(一)创设情境,让数学知识和生活结合起来

本节课我创设让学生“想一想”做一个长方体纸盒至少需要多少纸板这一情境来引发学生思考,要求“需要多少纸板”就必须知道长方体纸盒的什么,让学生通过思考和交流,认识到“必须分别计算出六个面的总面积”。这时及时我指出:“长方体或正方体六个面的总面积叫做表面积”,这样设计能刺激学生产生好奇心,唤醒学生强烈的参与意识,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。

(二)动手操作,激发学生的自主探究能力

在教学长方体表面积的计算方法时,先让学生动手量一量这个长方体纸盒的长、宽、高,然后让学生独立思考如何求这个长方体纸盒的表面积,最后以小组为单位交流想法并把方法与结果记录下来,共同探索出长方体表面积的计算方法。

(三)巧编练习题,培养学生的优化思维和归纳能力

在学生掌握了长方体表面积的计算方法后,我没有单独安排时间推导正方体表面积的计算方法,而是设计了一道练习题(求长、宽、高都是3厘米的长方体的表面积的最优方法)。学生在探讨算法的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,在学生探究和交流的过程中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。

(四)联系实际,利用数学知识解决问题

我通过创设情境让学生看到许多实际生活中的问题可以通过学到的知识来解决的,学生深刻地感受数学与实际生活是密切联系的。为此,我出示了在生活中经常见到的火柴盒,让学生分别求一求火柴盒的内盒和外盒的表面积,从中使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们在求表面积是不能死套公式,要根据实际情况具体问题具体分析。

面积4教学反思篇4

20xx年10月24日,我参加了经开区数学基本功比赛,执教《平行四边形的面积》这节课,实施教学后一些问题让我陷入思考。下面从我备课及执教的经历谈起。

首先,对于内容的分析,我在教学设计中已经阐明,因此不再赘述。对于学情,我以本校五年级学生为参照,调研了本校学生对此知识的想法,根据学生问卷的回答情况发现了这样的`问题:

1、长方形的面积公式学生基本都能写对,但出现与算周长混淆的情况,并且已经想不起来长方形的面积是由数方格推导出来的。

2、求平行四边形的面积时出现这样几类情况。

(1)用算周长的方法计算,占15%;

(2)用邻边相乘的方法计算,占35%;

(3)知道转化成长方形,但不能正确计算,占23%;

(4)其他(包括不知道怎么算),占27%。

虽然我深知读懂教材、读懂学生的重要性,但理解有限,在设计与执教过程中,反映出以下三个问题。

一、学情分析能力不足

我虽然进行了学情分析,但由于自己的理解有限,我没有分析到其实学生对于找原来的平行四边形与转化后的长方形之间的等量关系其实是不理解的,是一个难点,导致我以如何向学生渗透转化思想为重心了。

二、课堂调控能力有限

在实施教学的时候由于学生的学情不同,执教班级学生基本已经知道平行四边形的面积等于底乘高,加之我的现场调控能力有限,因此并不能顺着学生的思维进行教学,跟我设计的初衷产生了水土不服的现象,但后来我仔细回想了执教过程中的一些学生表现,优等生知道公式,并不代表所有学生都知道,应该具备一些调控能力让所有学生经历验证的过程,但错过了,这一点也说明我的课堂调控能力是需要加强的。

另外一个问题是找等量关系时,我由于时间的限制,代替了学生的观察发现,带领学生直接演示了原来的平行四边形与转化后的长方形之间的关系,推导出了公式,这点挺遗憾的。

三、数学语言不严谨

在此次教学中,我的数学语言不够严谨,比如数学上专业的术语“平移”等说得不规范。

针对以上问题我想教师的调控能力这些非一日之功,在以后的课堂教学中我会尽量注意记录自己的问题与语言,不断反思,从而慢慢提高,增强自己上现场课的经验。

对《平行四边形的面积》的设计,我没实现的是,找等量关系过程对学生是一个难点,我对突破这个难点的想法如下。

预设教学片段:

师:同学们,把我们的长方形还原为平行四边形,你能标出平行四边形的底和对应的高吗?请同学们动手标一标吧。

师:同学们,把平行四边形转化成长方形,你能找出原来的平行四边形和转化后的长方形有哪些相等的关系吗?小组讨论并相互说说你的发现。

当然,这是我的初步想法还没有进行实际教学,因此不知道这些能不能突破难点。

通过本次讲课,让我真正乐趣无穷的是对课不断地思考,发现课的奥妙,有遗憾,有困惑、有思考……我想这些都是成长,教学时间那么长,我想读懂教材,读懂学生,这不容易的事总会慢慢理清,然后,不断成长!

面积4教学反思篇5

平行四边形面积的计算是五年级上册第五单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是与自己的设想大相径庭。

(1)数方格中的得与失。

教材中所设计的数方格的过程是紧跟上图中的花坛来的。把两个花坛按比例缩小后画在了方格纸上,让学生把方格纸上的1格看作1平方米来数。这与学生以前的数法有了细微的差别。再加上平行四边形中有不满1格的情况,怎样才能把面积准确的数出来是学生需要认真思考的问题。所以,我认为,没必要让已经遇到新问题的学生再添上不必要的负担,哪怕是微小的负担。所以,我打乱了图形与花坛原有的联系,没有让学生按课本上的方法去数,而是让学生按照以前的方法,单纯把这两个图形按每个格1平方厘米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数,如果你有更方便的方法就更好了。”有利于有能力的同学向转化的方法靠拢。

学生数好以后,说一说数的结果。再让学生说说你是怎样数的?可惜的是由于紧张,这个环节给漏了。这成为本节课的一大败笔。事后我自己安慰自己:其实,只要数出来了,怎样数不重要,重要的是观察数据找规律。但客观上讲,这让我失去了一个渗透割补法的机会。在数方格的过程中,聪明的学生肯定能想到把左侧沿着方格线剪开移到另一侧,把所有的方格变完整再去数。这时,我就可以随即告诉学生,这种割下来补到图形另一侧的方法叫割补法。这样教学可以为学生以后把平行四边形转化成已经学过面积计算的图形做好方法上的准备。

(2)面积推导中的意外收获。

在推导平行四边形面积计算公式时,我鼓励学生大胆想象,通过动手剪一剪、拼一拼的方法,把平行四边形转化成会计算面积的图形,课前,我并没有对学生抱太大的希望。学生能说出两种方法就很不错了。为此,我还专门准备了一个演示的课件,以备不时之需。但学生的表现出乎了我的预料。

“老师,我是这样拼的。我从平行四边形左上角开始,把多出来的一块向里折,就出现了一条线,然后沿着这条线剪下来,把它拼到平行四边形的另一边,就出现了一个长方形。”王昱璇说。

“老师,我的方法和他的不一样。我是直接把平行四边形对折,然后沿着折线剪开,也能把平行四边形拼成一个长方形。”熊耀方法很独特。

“我是把平行四形两边都剪下来,然后得到了一个长方形。”付玉提出了自己的做法。

“你觉得合适吗?”我把判断的权利交给了学生。

“不行,虽然也能变成长方形,但是,这个长方形和原来的平行四边形相比少了两块。”刘子谦认真分析道。

“我们的目的是把平行四边形变个样,所以不能让它缺损。”我肯定了刘子谦的说法。

“谁能帮忙改一下?”

“只要把剪下来的两小块加上就可以了。”易凡把剩下的两块小心翼翼地加在了一侧,又把它拼成了一个新的长方形。

“我把平行四边形沿着对角线剪开,也拼成了一个长方形”刘子谦补充说。 他的方法立刻引起了争议。

“老师,我不同意他的说法。我刚才就是沿着对角线剪开的,根本不能拼成一个长方形,我又拼成了一个平行四边形。”易凡拿着自己失败的作品站上来说。

“为什么都是沿着对角线剪开的,这两位同学拼得结果却不同呢?”我把两位同学的作品同时放在展台上,让大家观察。

“两个平行四边形的形状不同。”学生很快就找到了原因。

“能拼成长方形的这个平行四边形,它的对角线有什么特点?”我继续引导。

“这条对角线,恰好是平行四边形的高。”

“看来,只有沿着高剪开才能把平行四边形拼成长方形。”我适时总结。

通过这一环节,使学生明白只要沿着平行四边形的高剪开都能把平行四边形拼成一个长方形。平行四边形的形状变了,但是面积没有发生变化。为后面研究平行四边形与拼成的长方形之间的关系,推导平行四边形面积计算公式做好了知识储备。

这是我比较得意的环节。但功劳不在我,而在我的学生。

《面积4教学反思5篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭