负整数教学反思5篇
作为一名教师,大家绝对要习惯性地进行教学反思,教学反思是老师对教学过程思考的一种应用文种,以下是加分文档网小编精心为您推荐的负整数教学反思5篇,供大家参考。
负整数教学反思篇1
这是学生第一次接触小数乘法,教材安排了复习积变化的规律。通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。所以,我从以下几个方面作安排:
1.突出积变化的规律
在教材中积变化的规律是复习,在教学中却将它当新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数乘以(除以)多少,积就会乘以(除以)相同的数这样一个变化规律,引导学生直接运用这个规律计算出1.5×5,同时运用小数乘整数的意义进行验证,感受规律的正确性。
2.突出竖式的书写格式
有了前面对算理的理解,当遇到用竖式计算0.72×5时,学生不会感到困难,但要他们说出为什么,一些孩子还是不能理解,所以抓住小数点为什么不对齐来引导学生思考,推导出应根据整数乘法的计算方法计算,最后还有将积缩小相应的倍数。
3.突出小数位数变化
小数位数的变化是本节课的一个难点,因此安排了两个练习,一个是推算小数的位数,另一个是判断小数的位数,通过用两道练习来让学生认识到并不是积的小数位数和因数的小数位数都是一样的。
在课的结尾还安排了头脑风暴,填写()×()=3.6,让学生体会积的小数位数和因数的小数位数之间的关系,扩散学生思维,发挥学生的主观能动性,去主动思考,激励探究。
4.突出口算
教材中并没有安排小数乘整数的口算,而在实际学习中,口算由于数目比较小,计算结果可以比较快速地反馈,易于检验学生计算的正确与否,同时可以帮助学生理清计算小数乘整数的计算思路,所以在计算中增加了口算练习,让学生主动说出自己的想法,同时用小数乘整数的意义检验方法的正确性。
在本节课的学习中,还有一些做得不足的地方学生开始对学习充满兴趣,积极地思考,运用发现发现的规律去解决问题,能正确计算小数乘整数,而让我困惑的是,在前面的学习过程中都很流畅,顺利的引导学生进行知识的迁移和扩展,学生掌握情况也良好,但并没有化的去让学生参与到课堂,并没有意识去倡导小组合作学习,没有让学生在质疑,讨论,交流中发现问题,分析问题,再去解决问题,真正去经历探究的过程,所以到后面的教学过程中,学生略显疲态,所以这节课让我意识到数学教学活动必须是学生学,师生合作探究,发现的过程。
所以,在以后的教学中,必须以学生为主体,教师为主导,活动为主线的教学模式,让学生参与到课堂,自主探究,合作交流,再质疑的过程,才能真正实现高效的课堂。
负整数教学反思篇2
本节课是小数和整数相乘的第一课时,主要目标就是让学生掌握小数和整数相乘的方法并熟练运用之解决一些实际问题。学生的知识准备是整数和整数相乘的方法及小数的意义。本节课主要是在此基础上探索出小数和整数相乘积的小数点点在哪儿,从而解决本节课的教学目标。本人上此节课时先导入,出示场景列式0.8×3和2.35×3,问与以前学的乘法有什么区别,很容易引出了新课,小数乘整数。而后着重解决0.8×3的计算方法。让学生想一想根据以前的方法计算出结果,方法一根据乘法的意义,得出是3个0.8相加,从而可以加出2.4,方法二把0.8元化成8角去计算,然后再换算回来,也是2.4(元)。然后提出每次这样算都太麻烦,可以像整数乘法那样用乘法竖式计算,竖式的计算结果肯定是2.4,至于为什么计算结果是2.4,教科书没有给出明确的算理,只是根据上述的两种方法证明了结果是2.4,而老教材的算理是把0.8扩大10倍,然后再把积缩小10倍。于是我找了一些录像资料,都是根据小数的意义来计算的,即:0.8是8个0.1,乘3就是24个0.1,所以就是2.4。这样很明确。于是模仿之,也这样做了。所以也就产生了如此的疑惑,不知究竟是否需要这样的算理,是否把此段省掉就直接进入2.35×8,然后进入下一个进程,用计算器探索积的小数位数与因数中小数位数的关系。
课没上完就下课了,现在回想,真是不应该啊。现在反思为什么会这样呢?原因有二:其一是让学生说算理时让他们根据自己的理解用自己的语言说得时间太多,听完他们的发言后我明白他们说得是什么并且也知道他们的理解是完全正确的(其他人不一定听得懂),而且这种情况延续了好几个同学。不知道大家是否有这样的感觉:以前自己在学生时代学的数学公式已经所剩无几了,当时学习时是会的,不然考试也不会考好。记忆中有一个老师曾经对我们说过,真正理解的东西是永远也不会忘记的,而我现在忘记了,那就是当时没能真正的理解。其中有一些公式虽然忘记了,但是自己却能推倒出来,这也许就是真正的理解了吧!新课标上说要延长学生的非形式化的语言,以便让学生真正的充分的理解而非人云亦云似的不理解的记忆、运用,然而这样在课堂上确是很花时间的,不知这种非形式化的语言所用时间占多大比例为宜(小班化那是最好不过了);其二是自己设计的问题不够精炼,这一点会在以后的教学中改进的。此次不顺也许就是未能充分的吃透教材导致的。
再有,就是学生的回答与教师的预设不一致,比如学生在说0.8×3方法二(把0.8元化成8角去计算,然后在换算回来,也是2.4)时,他直接说把0.8看成8来算的,而教师需要的是他说把看成0.8角来算的。由于未能考虑到如此的情形,就硬生生的把他的说法改成8角。专业成长是个经验积累的过程,只是这个时间能否短点呢?
负整数教学反思篇3
?小数乘整数》是人教版五年级数学上册第一单元《小数乘法》的第一课时,是在学生已经学过整数乘法及小数的意义和性质的基础上进一步学习的。课始,先复习积随因数变化规律、和小数的性质为新课做铺垫。情境导入新课后,学习课本第2页例1时,首先让学生根据以前学过的知识研究3.5×3等于多少。有的学生根据乘法的意义把乘法转换为学过的小数加法;有的学生把人民币单位“元”转化为“角”,也就把小数乘法转化为整数乘法;也有学生列竖式完成,分别从不同角度想出了三种方法。
集体交流时,学生都觉得用乘法竖式好,但理解每一步的计算时出现了问题——小数点要点在哪里?为什么?于是就从积的变化规律入手,引导学生利用“转化”思想把小数乘整数转化成整数乘法进行计算,然后把积进行还原。由此使学生理解小数乘整数的竖式方法。也为后面学习小数乘小数打下基础。
接下来学习例2:0.72×5时,就直接作为练习完成,而后交流并讲清计算方法。做出结果3.60后,讨论处理办法,最后明确化简格式。本节课通过试做、交流、小结、练习、再交流、最后总结方法,明确计算小数乘整数时,可以先算整数乘整数,再点上小数点。当学生对小数乘整数的方法进一步认识后,再引导学生观察思考,把小数乘整数当成整数乘整数算出积后,怎样在积中点上小数点?学生通过观察,比较,提出:因数中小数是几位,积就是几位小数这个猜测,然后通过后续练习题目验证猜测。由此学生对小数乘整数的计算方法就有了更深一步的认识。
不足之处是对于小数乘整数的意义的探究较为被动,虽然能够自如地进行列式但是对于意义的表述能力不强。计算练习中仍出现了忘点小数点、计算马虎等现象,需进一步加强练习。
负整数教学反思篇4
小数乘整数是在整数乘法的基础上进行教学的,把小数乘整数先看成整数乘整数是这节课的一个关键。
在课堂上我首先复习了小数与整数的加减法这后由情境图引了小数与整数的乘法,强调了小数加减法竖式中一定要小数点对齐,而在小数与整数相乘列竖式时要最右边的数位对。
可是在学生练习小数乘法时,写小数乘法竖式格式错误很多,许多同学都是象小数加法那样写,只记住小数点对齐。
但在讲过几遍之后,错误的人数相对减少了,以后还要多加练习。
负整数教学反思篇5
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用,教学反思《分数乘整数教学反思》。这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法在过程中约分时,我给学生练习的题目是: ×5,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性。应该将题目改得稍复杂些,变成“13× 5/26”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。