反比例函数教案5篇
教案是教师提升课堂互动的重要工具,能够激发学生的学习兴趣,通过教案能够帮助教师设计有效的评估方式,及时了解学生进展,加分文档网小编今天就为您带来了反比例函数教案5篇,相信一定会对你有所帮助。
反比例函数教案篇1
教学目标:使学生对反比例函数和反比 例函数的图象意义加深理解。
教学重点:反比例函数 的应用
教学程序:
一、新授:
1、实例1:
(1)用含s的代数式 表示p,p是 s的反比例函数吗?为什么?
答:p=600s (s0),p 是s的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:p=3000pa
(3)、如果要求压强不超过6000pa,木板的面积至少 要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数 图象。
(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。
二、做一做
(1)蓄电池的电 压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压u=36v , i=60k
完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10a,那么用电器的可变电阻应控制在什么范围内?
r() 3 4 5 6 7 8 9 10
i(a )
如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于a、b两点,其中点a的坐标为(3 ,23 )
(1)分别写出这两个函 数的表达式;
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
p145~146 1、2、3、4、5
作业:p146 习题5.4 1、2
反比例函数教案篇2
教学目标
(一)教学知识点
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
(二)能力训练要求
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
(三)情感与价值观要求
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.
教学重点
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
教学难点
领会反比例函数的意义,理解反比例函数的概念.
教学方法
教师引导学生进行归纳.
教具准备
投影片两张
第一张:(记作5.1a)
第二张:(记作5.1b)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从a地到b地的路程为1200km,某人开车要从a地到b地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.
Ⅱ.新课讲解
[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
[师]大家还记得函数的定义吗?
[生]记得.
在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.
[师]大家能举出实例吗?
[生]可以.
例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.
等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.
[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.
[师]请看下面的问题.
电流i,电阻r,电压u之间满足关系式u=ir,当u=220v时.
(1)你能用含有r的代数式表示i吗?
(2)利用写出的关系式完成下表:
r/Ω20406080100
i/a
当r越来越大时,i怎样变化?当r越来越小呢?
(3)变量i是r的函数吗?为什么?
请大家交流后回答.
[生](1)能用含有r的代数式表示i.
由ir=220,得i= .
(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻r越来越大时,电流i越来越小;当r越来越小时,i越来越大.
(3)变量i是r的函数.
由ir=220得i= .当给定一个r的值时,相应地就确定了一个i值,因此i是r的函数.
[师]这位同学回答的`非常精彩,下面大家再思考一个问题.
舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.
[生]根据i= ,当r变大时,i变小,灯光较暗;当r变小时,i变大,灯光较亮.所以通过改变电阻r的大小来控制电流i的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.
投影片:(5.1a)
京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.
[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.
[师]从上面的两个例题得出关系式
i= 和t= .
它们是函数吗?它们是正比例函数吗?是一次函数吗?
[生]因为给定一个r的值,相应地就确定了一个i的值,所以i是r的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.
[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?
[生]可以.由i= 与t= 可知关系式为y= (k为常数且k≠0).
[师]很好.
一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.
从y= 中可知x作为分母,所以x不能为零.
3.做一做
投影片(5.1b)
1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
3.y是x的反比例函数,下表给出了x与y的一些值:
x-2-1
13
y
2-1
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.
[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.
[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.
[生]设反比例函数的表达式为
y= .
(1)当x=-1时,y=2;
∴k=-2.
∴表达式为y=- .
(2)当x=-2时,y=1.
当x=- 时,y=4;
当x= 时,y=-4;
当x=1时,y=-2.
当x=3时,y=- ;
当y= 时,x=-3;
当y=-1时,x=2.
因此表格中从左到右应填
-3,1,4,-4,-2,2,- .
Ⅲ.课堂练习
随堂练习(p131)
Ⅳ.课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.
Ⅴ.课后作业
习题5.1
Ⅵ.活动与探究
已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?
分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.
解:由题意可知y-1= =k(x+2).
当x=1时,y=4.
所以3k=4-1,
k=1.
即表达式为y-1=x+2,
y=x+3.
由上可知y是x的一次函数.
板书设计
反比例函数教案篇3
教学目标:
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。
教学程序:
一、导入:
1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。
2 、u=ir,当u=220v时,
(1)你能用含 r的代数式 表示i吗?
(2)利用写出的关系式完成下表:
r(Ω) 20 40 60 80 100
i(a)
当r越来越大时,i怎样 变化?
当r越来越小呢?
( 3)变量i是r的函数吗?为什么?
答:① i = ur
② 当r越来越大时,i越来越小,当r越来越小时,i越来越大。
③变量i是r的函数 。当给定一 个r的值时,相应地就确定了一个i值,因此i是r的函数。
二、新授:
1、反比例函数的概念
一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。
反比例函数的自变量x 不能为零。
2、做一做
一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?
解:y=20x ,是反比例函数。
三、课堂练习
p133,12
四、作业:
p133,习题5.1 1、2题
反比例函数教案篇4
知识技能目标
1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2.利用反比例函数的图象解决有关问题.
过程性目标
1.经历对反比 例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2.探索反比例函数的图象的性质,体会用数 形结合思想解数学问题.
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数 的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数 (k是常数,k0)的图象,探究它有什么性质.
二、探究归纳
1.画出函数 的图象.
分析 画出函数图象一般分 为列表、描点、连线三个步骤,在反比例函数中自变量x 0.
解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1) 、(-3,-2)、(-2,-3)等.
3.连线:用平滑的 曲线将第一象限各点依次连起来,得到图象的 第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
上述图象,通常称为双曲线(hyperbola).
提问 这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数 的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并 将讨论、交流的结果回答 问题.
1.这个函数的图 象在哪两个象限?和函数 的图象 有什么不同?
2.反比例函数 (k0)的图象在哪两个象限内?由什么确定?
3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数 有下列性质:
(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
注 1.双曲线的两个分支与x轴和y轴没有交点;
2.双曲线的两个分支关于原点成中心对称.
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速 度快,小华乘汽车比骑自行车到镇上的时间少.
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.
三、实践应用
例1 若反比例函数 的图象在第二、四象限,求m的值.
分析 由反比例函 数的定义可知: , 又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.
解 由题意, 得 解得 .
例2 已知反比例函数 (k0),当x0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.
分析 由于反比例函数 (k0 ),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.
解 因为反比例函数 (k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.
例3 已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;
(2)若点a(-5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?
分析 (1) 反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点a在反比例函数的图象上,易求出m的.值,再验证点a关于两坐标轴和原点的对称点是否在图象上.
解 (1)设:反比例函数的解析式为: (k0).
而反比例函数的图象过 点(1,-2),即当x=1时,y=-2.
所以 ,k=-2.
即反比例函数的解析式为: .
(2)点a(-5,m)在反比例函数 图象上,所以 ,
点a的坐标为 .
点a关于x轴的对称点 不在这个图象上;
点a关于y轴的对称点 不在这个图象上;
点a关于原点的对称点 在这个图象上;
例4 已知函数 为反比例函数.
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3 时,求此函数的最大值和最小值.
解 (1)由反比例函数的定义可知: 解得,m=-2.
(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.
(3)因为在第个象限内,y随x的增大而增大,
所以当x= 时,y最大值= ;
当x=-3时,y最小值= .
所以当-3 时,此函数的最大值为8,最小值为 .
例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.
(1)写出用高表示长的函数关 系式;
(2)写出自变量x的取值范围;
( 3)画出函数的图象.
解 (1)因为100=5xy,所以 .
(2)x0.
(3)图象如下:
说明 由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质.
1.反比例函数的图象是双曲线(hyperbola).
2.反比例函数有如下性质:
(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线 从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
五、检测反馈
1.在同一直角坐标系中画出下列函数的图象:
(1) ; (2) .
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当 时,y的值;
(3)当x取 何值时, ?
3.若反比例函数 的图象在所在象限内,y随x的增大而增大,求n的值.
4.已知反比例函数 经过点a(2,-m)和b(n,2n),求:
(1)m和n的值;
(2)若图象上有两点p1(x1,y1)和p2( x2,y2),且x1 x2,试比较y1和 y2的大小.
反比例函数教案篇5
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1、出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的.数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2、这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3、小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1、出示例2,根据题意,学生口述填表。
2、教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1、请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2、教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3、如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书:xy =k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。