五年级教学位置教学反思5篇
通过教学反思教师能建立现代化的教学理念,实用的教学反思是督促我们不断成长进步的,以下是加分文档网小编精心为您推荐的五年级教学位置教学反思5篇,供大家参考。
五年级教学位置教学反思篇1
?用数对确定位置》这节课开始给我的感觉是比较简单的一个内容。可当静下心来细细琢磨教材时,才感觉到本不像我所料。这节课的重点不是满足让学生会用“数对”表示一个位置就可以了,而是让学生回顾科学家探究的历程,“数对”的产生过程才是本节课的关键所在。“数对”这个概念对五年级的小孩子来说是极为抽象而又陌生的,如何让他们既对其生成过程有所经历,又对其实质顺理成章轻松地接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。
本节课从学生熟悉的生活实际入手,让学生说开家长会是怎样告诉家长自己的座位,使家长能够顺利找到座位,激发了学生的求知欲,产生了确定位置的必要性。接着通过座位图来学习“数对”,让学生用“数对”来描述座位图中人物的位置。再借助班级的实际座位,让学生用“数对”表示自己的位置,并通过一些小游戏进一步明确实际座位中的行和列。在明确了“数对”的概念后,抽象出方格图,让学生在方格图中确定位置。将数学知识应用到生活中去。由于这节课是学校要求的平板运用的课,所以在练习阶段又采用了平板的拖拽功能进一步巩固用数对表示位置的方法,效果很好。
五年级教学位置教学反思篇2
在第一单元的《位置》教学中,我让学生从自己十分熟悉的座位入手,用自己唤起探究如何确定位置的欲望。在学生探究确定位置的方法时,我不急于告诉学生答案,而是让学生开动脑筋,尝试用自己的方法去描述,组织学生讨论谁的方法比较好。引入“数对”表示位置的方法时,我没有直接讲授,而是让学生运用自己喜欢的方式表示。此时,本课重要的知识点从学生之口引出,使学生获得极大的满足感,更进一步激发学习兴趣。同时从学生已有的知识经验中逐步抽象出数学的表示方法,让学生更易理解和接受。结合具体情境,贴近学生生活实际,借用教材的情境与问题这一思路,从学生自己班上的座位情况这一真实的课堂情境引入,再把情境图作为巩固练习。因为讨论的是学生每天都坐的位置,所以这一交换就很容易激发起学生兴趣,使教材内容更加丰富了。练习时的城市街区图、火车票、电影票、地球的经纬线等等,使学生体会到我们生活环境中,存在着大量的数学知识与问题,从而激发学生的学习兴趣、促进教学活动的生成。
在用数对确定位置的教学中,发现学生对“列在前,行在后”的数对表示方法,是用记忆来掌握的。在练习中多次会出现列数和行数位置颠倒的错误。其实,在现实生活中,我们成年人如果不明白道理仅靠规定或记忆,也经常将列数和行数位置颠倒。看来,学生虽然已经学会了数对的表示方法,但出现列数和行数位置颠倒的错误是属于记忆模糊的问题。对数对中列数在前,行数在后的表示方式,数学家或者教材的编写者为什么会这样规定了?由于我看到的资料有限,一时还无法找到教材中专家这样规定的依据。在教学中,我们可以设计这样的环节,让学生思辨:数对中,数学家为什么要把列数写在前,行数写在后呢?这样也许会给学习带来意想不到的收获。
五年级教学位置教学反思篇3
学校近期举行“过关课”观摩,我选择的教学内容是苏教版小学数学第九册的“用数对确定位置”。
在备课中,关于“行”与“列”的定义出现了困惑,请教数学组的其他老师,大家意见不一。老师:日常生活中,我们习惯把走进教室时紧挨着窗的一组设定为第一组,第一个同学就是第1列第1行。
因此,用生活数学的视角看,我通常从右往左数。所以我认为:小军的位置不一定为第4列第3行。h老师:教材上写着竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。那么,我个人觉得教材这样规定是和中学数学中的直角坐标系相吻合的,便于中小学数学的衔接。教学时,我们应该研究教材的编排意图,应该从教师站的角度来观察,小军是坐在第4列第3行。t老师:我上课时是以教室的门为参照物,当所在教室中师生的位置刚好与教材情景图相同时,我得到了小军坐在第4列第3行,当位置与情景图相反时,结果就不同了。
听了老师们的发言,感触良多。出现的争议源于老师们对教材的不同解读。我只有请教《教师用书》,认真拜读小学阶段“确定位置”这一内容,发现一年级用一个“第几”描述物体在直线上的位置,二年级用两个“第几”表示物体在平面上的位置,通过两次教学,学生有了一定的方向感,获得了自然数能表示次序的体验。在此基础上,五年级教学用“数对”确定位置,使学生由原来凭生活经验描述位置上升到用数学方法确定位置,从而发展学生的数学思考,培养空间观念,为六年级教学根据物体的方向和距离来确定物体的位置奠定基础。因为数对是按列与行确定位置的。
因此,竖排叫做列,横排叫做行都是约定俗成的规定,而从教材提供的场景图来看,显然要求我们按照h老师的思路来设计我们的教学流程。在教学时,为了避免孩子们出现以上争议,按照h老师的意图,我事先做好。把我左边的、前排的第一位同学的名字放在数对(1,1)的位置,全班44位同学按座位正好分成8列,再按照前后的顺序依次把姓名放入表格中(坐标)。先让孩子们观察屏幕,找到自己的位置,说出数对;然后我通过报数对随机点名,还故意报出数对(9,2)、(4,7),孩子们很快发现这两个是空号,因为我们班没有9列,也没有7行;最后我分别点名数对(3,1)(3,2)(3,3)(3,4)(3,5)起立,(1,3)(2,3)(3,3)(4,3)(5,3)起立,让同学们分别思考:看到这些数对,再观察起立的同学,你发现了什么?
孩子们很容易得出:第一次起立的同学在同一列;第二次的在同一行。不仅避免了争议,还使得每位同学共同参与数学活动,并在活动中轻松、快乐地获得知识。
五年级教学位置教学反思篇4
1、关注学情,教而有效
认知教育学家奥苏贝尔说过:“如果我不得不把教育心理学的所有内容简约成一条原理的话,我会说:影响学习的最重要的因素是学生已经知道了什么,弄清了这一点后,再进行相应的教学。”的确,有效的数学教学应该基于学生的已有经验。唤醒学生原有知识,了解学生的生活经验和已有知识背景,是学生学习的基础。因此我在教学时,首先通过让学生自己来描述赵晨的位置,激活学生头脑中已有的描述物体位置的经验,然后通过交流评价,自己认识到这些方法的不足,引发学生产生用统一、简明的方式来确定位置的需求,体会学习新知的必要性。
2、巧设平台,彰显个性
学习是一种个性化行动。作为教师,应当在课堂教学环境中创设一个有利于张扬学生个性的“场所”,让学生的主动性和创造性得到尽情释放。在让学生以赵晨的位置“第3列第2行”为例,根据数学的简明性特点和符号化特点自己创造更简洁的表示方法的环节中,为学生提供了自主思考的空间,学生的思想无拘无束,创新灵感、创新思维不断涌现,课堂真正成为了他们发挥自己聪明才智的乐园。然后再针对学生自己创造的方法,通过师生互评、生生互评,让学生产生矛盾冲突,抽取共性,从而产生确定位置的方式——数对。可以说数学的特点促进了数对的产生,数对的产生也符合数学的特点。再通过对“数对”名字的分析,使学生对于“一对数”确定位置的理解也更加清晰了。
3、知趣交融,快乐求学
心理实验表明,学生经过20至30分钟紧张的新课学习后,会感到疲劳,学习兴趣降低,学困生表现尤为明显。而“兴趣是最好的老师”,为了继续保持学生积极的学习状态,教师要特别注意练习的设计。“找好朋友”的练习紧密联系生活实际,而且形式活泼有趣,极大调动起了学生学习的兴趣。学生在这一活动中,动眼看,动耳听,动脑想,动口读,动手找,调动了多种感官参与学习。通过这个形式新颖有趣的练习,变学生被动学习为主动参与,既增大了练习面,又使全体学生主动参与。
4、研究探索,发展思维
本课有两大主线贯穿始终:一条是图例的抽象和演变:由实物图、到点子图再到方格图,这一抽象的过程细腻、清晰,借助“数形结合”的方式很好地渗透了“坐标”这一较难理解的数学知识,为学生的后续学习做好铺垫。另一条线是确定位置的方法:由不同的描述方法过渡到列与行的方法最后通过对比淘汰产生数对的方法,这一表达方式逐步递进、简化、抽象,都使学生对数学的简捷性和抽象性有了深刻的感受和体会。课堂中,两大主线的层层递进与发展,把本课数学知识和思想的产生与发展过程展现得淋漓尽致,教师引导学生进行前后对比反思,及时提升学生的认识,培养反思习惯和能力。通过学习,学生不但熟练地掌握了数对知识,而且真正感受到了数学能够把复杂的问题简单化,也真正体会到了数学符号的简洁清晰,最重要的是学生真正亲身经历了数学知识、数学思想的形成过程,这些都为学生的全面发展、长远发展打下了良好基础。
5、缺点与不足
常言道:教学永远是一门有遗憾的艺术。的确,尽管在不断的雕琢中我努力追求完美,但几缕缺失时常萦绕脑际,难以释怀。
(1)在第一环节中让学生用自己的方法把方队中赵晨的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。
(2)这节课不仅仅要教会学生用“数对”的方法来表示位置,更重要的是让学生在解决问题中,构建“数对”模型,经历用简洁的数学符号确定位置这一抽象的过程,这才是本课的重点。学生在经历了由文字描述到符号表达,由繁到简的再创造过程中,进一步感受到了数学的抽象化、符号化。这些方面本课都体现的比较充分,但在让学生感知“数对”确定物体位置,要从两个维度来考虑的数学本质的同时,对数对的有序性体现的不够充分。
(3)此外,联系实际举例:说说生活中哪些地方用到了数对思想,学生非常缺少这方面的经验,往往举不出恰当的例子,是否能改为先介绍“地球上经纬线知识”,课后再让学生在生活中寻找应用了数对思想确定位置实例,也在思考中。
五年级教学位置教学反思篇5
?用数对确定位置》知识点不多,对于五年级的学生来说是比较简单的,那么如何使教学的内容更丰富,在课堂上激发学生学习的需要,使学生产生探究的欲望,便成了我的主要思考方向。
学生在一年级已学习了用“第几”描述物体在某个方向上的位置,在二年级时学习了用类似“第几排第几个”的方式描述物体在平面上的位置,已经初步获得了用自然数表示位置的经验。因此,在导入环节,我出示了小军班级的座位图后,先向学生提出要求:你能用以前所学过的知识告诉我小军的位置在哪里吗?你是怎么看的呢?学生在描述时出现了两种不同的说法:“第4列第3个”、“第3排第4个”。小军的位置没变,但同学们看的角度和方法不同,所以产生了不同的说法,从而使学生产生正确、简明描述小军位置的需要。学生在生活中已具备了确定列和行的经验,因此,便很顺利地得出竖排叫做列,从左往右数,横排叫做行,从前往后数,小军是在第4列第3行。
知道了确定第几列、第几行的规则后,再将座位的场景加以抽象,用圆圈表示实际场景中不同的座位,详细地标出每一列每一行,让学生在圆圈图中找出小军的位置,提高了学生的抽象思维能力。同时,向学生介绍表示位置还可以用更简明的表示方法——用数对确定位置。学生在具体情境中学习用数对确定位置,并理解用数对表示物体位置的方法,第一个数表示第几列,第二个数表示第几行。
当学生学会从平面图上用数对确定位置后,我又引导学生回归到生活中,在教室里,找到自己的位置在第几列第几行。通过游戏的形式,使学生认识教室里的列和行,并学会描述自己的位置和好朋友的位置。再通过对一组数对的观察,认识到同一列的第一个数字相同,同一行的第二个数字相同。(5,y)表示第5列的所有同学,(x,2)表示第二行的所有同学。当让学生用一个数对表示全班同学的位置时,学生出现了以下的数对:(x,y)、(y、y)、(x、x),通过举例,若y=8时,教室里没有(8,8)这个座位,使学生形象深刻地理解了只能用两不同的字母表示,才能表示全班同学的位置。
练习中,练习三的第2题,当学生完成数对后,我有目的地引导:“观察同列或同一行的两个数对,你有什么发现?”问题具有针对性后,学生都能从同列或同一行的数对去观察、思考,并发现规律。练习三的第3题,让学生讨论:“你发现花色地砖位置的规律了吗?”学生讨论地看似比较热烈,但指名回答时,学生却不敢发言了,在我的再三鼓动下,有几位同学站起来说出了他们的发现:一是同一列的第一个数字相同,同一行的第二个数字相同;二是数字中的奇偶数关系;三是花色地砖第3列1块,第5列2块,第7列3块,第9列2块,第11列1块,第2行1块,第3行2块,第4行3块,第5行2块,第6行1块。第3个发现也就是左右、上下都是对称的。