分梨问题教学反思6篇
只有认真思考写出来的教学反思才是对自己能力提升有帮助的,会写教学反思对于提升我们的教学能力是有很大的帮助的,以下是加分文档网小编精心为您推荐的分梨问题教学反思6篇,供大家参考。
分梨问题教学反思篇1
“植树问题”是新课程标准实验教材四年级下册的资料,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形状况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助资料的教学发展学生的思维,提高学生必须的思维潜力。
我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。我在十几年前仅接触过一年小学数学教学,今参加赛课,感觉个性好,反思整个教学过程,我认为我执教的这节课整体是成功的。
首先,设计流畅简单易懂。
整节课设计基于我班学生实际状况,课前创设情境使学生明确要学习的资料,紧之后引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在那里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:透过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点资料进行难点的突破。
其次,注重实践体验探究。
教学中,我创设了情境,向学生带给多次体验的机会,注重借助图形帮忙学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧之后提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
再次,联系生活拓展思维。
有好处的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有好处。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能到达继续建构学习的水平。所以,这节课我多次向学生带给体验的机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。
这节课虽扎扎实实,但问题也存在着。
一、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的潜力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,能够说说“间隔数=棵数—1,路长=间隔数x间隔长”等等知识的扩散。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。
比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,就应思考学生的知识构建,学生的知识认知一般是在具体情景中透过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。我能够利用线段图或者实例来帮忙学生学习。让学生有能够凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
分梨问题教学反思篇2
用反比例解决实际问题是在学生已经学习了列方程解决实际问题和反比例的意义的基础上进行教学的,考虑到本班学生的实际情况,创设了学生熟悉的包装书本的情景后,直接提出要求:列方程解决问题,以避免发散思维造成时间分散,使得教学重点部分留给学生的数学活动时间不足。教学中先让学生独立思考,尝试解决问题,然后引导学生认真分析3个小问题:情境中有哪三个量?哪个量不变?包数和每包本数成什么比例?找出等量关系进而列出方程,从而使学生掌握用比例解决实际问题的基本方法。
本节课教学的收获是给学生充分思考的时间,在学生原有的认识的基础上,建立反比例意义与列方程解决实际问题间的联系,掌握用比例解决问题的一般步骤。
回顾本次教学,还有几方面有待改进和提高。
1.要注意培养学生的发散思维,鼓励学生用不同的方法解决问题,对学生的正确想法要及时肯定,保护学生的学习热情,让学生在解决问题中体验成功的喜悦。
2.增加正比例和反比例解决实际问题的对比,加深理解。
对这节课整体感觉还不错,但仍有少数学生作业中出现问题。学生不习惯用比例解决实际问题,有混淆正、反比例的现象,说明对题中的数量关系分析的不透彻,数量关系不会表达,需进一步反思。
分梨问题教学反思篇3
本课是在学生学习了分数乘法单元中简单的求一个数的几分之几是多少的分数乘法应用题的基础上教学的。这一类实际问题比基本的求一个数的几分之几是多少的应用题的数量关系稍复杂,题目所求的数量不是已知的分率所对应的数量,而是与这个分率有关的另一个数量,所以它是基本的分数乘法解决问题的发展。因此在教学中就要引导学生抓住关键句,找出解题的数量关系式。
下面就谈谈我就本课教学之后的一些想法:
(一)精心设计复习题
从观察线段图入手,让学生说说从图上可以知道些什么,再让他们通过比较,选出有用的条件自己编题、解答。在这一过程中,训练了学生观察和分析线段图的能力,同时,通过选择有用的条件进行编题,不仅使学生的思维能力得到强化,也让他们在数学学习上获得一种满足感,调动学习的积极性。再通过分析自己的算式,说出题目中的单位“1”和算式所运用的数量关系,使学生的知识得以巩固,也为后面学习例1作了很好的铺垫。
(二)注意语言表述形式的转换,帮助学生理解关键句和数量关系
“学校花坛里有84棵花,其中1/6是月季花,月季花有多少棵?”这一类问题由于可以直接利用一个数乘分数的意义来进行列式,学生比较容易掌握。但是形如“一种毛衣,原价56元,现在的价钱降低了2/7。降低了多少元?”这样的问题,就其表述形式而言与一个数乘分数的意义有一定的距离,学生理解时有一定的困难。因此在本课的练习中我加强了语言的转换练习,让学生用“谁是谁的几分之几”的句式来表述“皮球的个数比足球多2/5、实际用水量比计划节约1/9、实际产量增加2/7、梨树的棵数比桃树少1/4”这一些句子,学生在表述的过程中自然体会到了各个分数的意义,对于单位“1”的理解愈加到位,对分率与分率的对应量理解到位。从课的实施来看,效果还是挺不错的。
(三)注意操作,通过操作理解分数的意义,感悟数量关系
有关分数实际问题的解答,我觉得理解已知条件中分数的意义(也就是我们通常说的关键句),在此基础上写出数量关系式应该是解决这一类问题的关键所在。怎样突出这一关键点,我想安排一节补充课时,让学生根据关键句画图,通过物的操作活动透彻理解分数的意义,并写出多个数量关系我认为很有必要。这也是整个有关分数的实际问题解答的奠基工程,应该在我们的教学中得到足够的重视,并应在平时的教学中反复练习,我想这对于后续的教学大有裨益。
(四)让学生的思维在相互的交流与教师的提问中得到训练
在教学新课的过程中,先让学生通过比较,找出例题与复习题的相同与不同之处,接着再自己尝试解答。学生解答的时候,感觉做起来很得心应手,三下两下就做好了,而且有些学生用75+75×4/5做,也有一些用75×(1+4/5)做。此时,我先让同桌间相互交流想法说说自己为什么要这么做,每一步表示的是什么意思……仔细观察一下学生,发现他们都很愿意把自己的想法告诉同桌,有些同桌做的方法一样,俩人都争着要先讲;有些用的方法不一样,俩人就一起在研究、比较。在初步的交流后,再进行全班反馈。
由于刚才练习过,学生说起来还算流畅,如分析75×表示的是什么?后面为什么还要用75+75×4/5,运用的是哪个数量关系?第二种解法中1+4/5又表示什么?为什么要先求1+4/5,最后为什么要用乘法来算时,学生基本能答到点上。这一过程让学生感受到解答应用题,不仅要会解答,更要会分析。
当然,虽然在教学中考虑得比较全面,但仍存在着不少问题:
1、形式比较单一
课上除了老师问学生答之外,小组合作形式也比较单一:学生相互交流说想法、同桌讨论等,几次一来,老师和学生都感觉单调无味。因此,在平时,除了采取同桌合作、小组合作之外,我们还可以根据教学内容,适当地采取学生与教师合作或学生与电脑合作等,让学生在丰富的合作中感受学习数学的乐趣。同时,在组织学生进行合作之前,应给学生留出独立思考的时间,在此基础上的合作学习才有意义,才会让学生在合作学习中发表出自己的观点
2、与生活的联系太少
在教学中,教师应多联系实际,培养学生的应用意识,特别是本节课,学习的是“稍复杂的分数应用题”,也就是要求学生“解决实际问题”,但在实际教学中,给学生的感觉只是在一味地做题目,而不是在运用课上所学的知识去解决一些实际问题。此时,如果出示和学生生活学习相联系的题目,如:我们班有54人,其中男生占了,女生有多少人?学生的积极性一定会有所提高。总之,教师要善于从学生地生活实际入手,抽象得出数学知识,再回到实际生活中加以运用,不论在教学活动的`哪个环节,都注意与现实生活紧密联系,使学生真正切切感受到生活中有数学,生活中处处需要数学。
分梨问题教学反思篇4
本课是在学生学习了用列表的策略收集和整理信息,用从条件或问题想起的方法分析数量关系的基础上教学的,本课系统研究用画图的方法收集、整理信息,并在画图的过程中,分析数量关系,用“画图”的策略解决相关实际问题,帮助学生积累数学活动经验,感悟直观化的数学思想方法,发展几何直观,提高分析、解决问题的能力。
在教学例1前我先出示2题“看图解答”,引导学生看图说出问题、条件和数量关系,再列式计算,此环节的意义是通过从图中整理条件引导学生体会“图”的好处,同时也勾起了学生脑海中关于“画图”的回忆,也为例1的教学做好铺垫。例题1是用纯文字的形式出示的,由于题中的条件比较多,使学生在对文字的阅读理解中遇到了困难,对题中数量关系的理解也有些模糊,不过借助课一开始的“前置性练习”,很多学生能够想到用画线段图的方法来解决,但如何准确的在线段图上表示题意却有一定的困难,这时老师给出一条线段表示小宁,给学生一个“支点”,再让学生画另一条线段表示小春,并说说为什么要这样画,在画好了主体部分后让学生把题中的条件和问题在图上表示出来,从而完成一幅完整的线段图。在画好图以后,教师就要诱发学生“看图”进行推理,找出数量关系并进行分析,确定基本的解题思路,化图形为算式。本课中的例题不同与一般的简单的实际问题,由于其条件、数量关系的复杂性和抽象性,适合用画图的策略来解决,例题1呈现的是两个数量的和和差,通过假设让两个数量相同,期间通过演示使学生看到总数的变化,形象的展示了解题思路,加快了学生的理解速度,之后学生自主解题,板演并进行讲解,如此在观察中推理,在计算中比较,在比较中发现。最后的回顾环节,意在帮助学生已经积累起来的画图述问题、分析问题的经验上升到策略的层面,进而获得对策略的深刻的体验。
值得一提的是学生对策略的掌握要经历从模仿到逐步内化的过程,“试一试”是对画图策略的强化,教师要进一步放手,“想想做做”重在引导学生内化策略,“画图”作为解决问题的一种常用策略,是学生通过画图不断解决问题的过程中逐步感悟获得的,本课学习,画图不是最终目的,不可能仅凭一两堂课就能使学生掌握,画图是一种中介,是为了学生更好的学会思考,随着学习的深人,学生所遇到问题的类型在不断变换,而解决这些不同类型问题的策略却始终如一,学生对画图策略的运用越来越娴熟,对策略的理解也越来越深刻,从而帮助积累更多的解决问题的经验,感受策略的价值,提升数学思想方法。
分梨问题教学反思篇5
在教学用比例尺解决问题的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。而且在教学的过程中,方法也有不同,学生很容易混淆。
第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的.方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。
第二个就是方法的选择上,还可以利用图上距离和实际距离的倍比关系,直接计算也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在依样画葫芦罢了。
根据学生的这一情况,课后我又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。例如:比例尺1:200000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。
对于第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:200000表示的图上距离是实际距离的1/200000,实际距离是图上距离的200000倍,图上的1厘米实际是2千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。
在学生出现问题之后,针对学生的情况,及时地给学生适当的进行归纳整理,会加强学生的理解,帮助学生更好的掌握。
分梨问题教学反思篇6
本节课是在学习了正反比例之后的一个内容,这个内容的特点主要是运用比例知识解决实际问题。首先复习导入,一是找出哪一个量一定,二是如何判断另外两个相关联的量成什么比例,从而找出等量关系。在新课的教学中,围绕比例的知识特征提问:哪两种量是变化的?哪种量是固定不变的?使学生清楚这两种变量的比值一定还是乘积一定,它们成什么比例关系?然后根据比例关系写出等式.在教学中通过学生自主探究获得新知,然后通过“练”达到巩固和提高,自始至终让学生参与体验解决问题的全过程。但是,在实际教学过程中,还存在着很多的问题:
(1)从学生回答问题看,题目中没有直接告诉哪个量一定,需要学生自已从已知的两个量中发现定量,因此学生有时找不准什么量一定,这样对判断两种相关联的量成什么比例出现问题.
(2)在教学过程中,总是对学生不放心,这是一个不可忽视的问题。比如:在教学用反比例解决问题时,我完全可以放手让学生自己独立完成,但我总是担心怕学生不会做,还是自已包办代替讲了这样既禁锢了学生的思维,又耽误了教学时间,那些会做的学生也觉得太哆嗦.
(3)用比例知识解决实际问题,难度降低,正确率比较高,但是如果难度稍有提高,正确率就难说了。学生一般都不喜欢用比例方法,而喜欢用算术方法解答。