数学思考教学反思6篇
实事求是的教学反思才是督促自己不断进步的关键,针对自己的教学情况所写的教学反思是最有价值的,加分文档网小编今天就为您带来了数学思考教学反思6篇,相信一定会对你有所帮助。
数学思考教学反思篇1
算法多样化是不是就等同于一题多解,是不是算法越多越好呢?这是值得所有的小学数学老师思考的一个问题。作为教师,我们不应忽视学生的认知基础和思维水平,一味地强调算法多样化。我们教师在实施算法多样化的过程中,必须解决好两个问题:
1、要正确理解算法多样化的实质。
算法多样化是数学课程改革倡导的一种新的教学理念,是教师鼓励学生独立思考,用自己的方法解决问题,培养学生的创新思维,促进学生个性发展的体现。它是针对计算过程中,不同的学生会从各自的生活经验和思考角度出发,产生不同的思考方法而提出的一种教学策略,也是尊重学生个性化学习、促进学生个性化发展的有效途径,其实质是尊重学生对计算方法的自主选择。让他们在计算中感受计算方法和解决问题策略的多样性。为此,教学中教师不能为了算法的多样化,而将算法形式化、教条化。
不少算法是在教师“还有不同的方法吗”的不停追问、暗示下“逼”出来的。像有的学生为了“配合”教师,把实际计算中自己不用的算法“上报交差”;有的学生则为了“与众不同”,人为地拼凑算法;有的算法实际上是与别人雷同的……可以说,这些算法并不反映学生真实的思维状态,也没有多大的实际价值。由此可见,教师如果片面地追求算法的数量,以为算法越多越好,而忽视算法的质量,忽视算法背后所代表的学生真实的学习状态,很容易会把学生引入钻牛角尖和乱用算法的误区。这对学生的发展是非常不利的。
2、处理好算法多样化和算法优化的关系。
每个学生的生活经验和思维发展水平不同,对相同的教学内容往往表现出个性化的认识和理解,所使用的计算方法必然多样性,因此在解决数学问题的过程中就会形成多种方法。在这些方法中,有些算法比较简便,有些算法比较麻烦;有些算法思维水平较低,有些算法层次较高,这就会产生算法优化的问题。算法优化的过程应是学生不断体验和感悟的过程,而不是教师强制规定和主观臆断的过程,教师要让学生自己逐步找到适合自己的最优算法。例如,解决“18+7”这样的计算问题时,学生提出各种算法后,教师不要急于评价,也不要用一种算法去统一,更不能算法“自由化”,即想怎样算就怎样算。可以对学生提出的各种算法进行比较、分析,让学生在与同伴的交流比较中了解各种算法特点,找到适合自己的一种或者几种算法,以此正确地理解算法多样化和算法优化的关系。
至于教材中编排的某些算法,如果在教学时没有学生提出,教师应从学生的认知实际出发,区别对待。其一,若已经是学生不用的“低思维层次的算法”,教师可以不再出示,以免学生走回头路。其二,若是算法经教师“千呼万唤”仍不“出来”,说明算法离学生“最近发展区”很远,大可不必呈现。其三,若是有利于学生今后进一步学习和发展的算法,教师可通过提示等方式引导学生进行探索,也可通过向学生推荐等形式进行呈现。当然,我们也要注意避免把算法刻意“灌输”给学生。
数学思考教学反思篇2
您现在正在阅读的《数学思考》教学反思文章内容由小编为您收集!本站将为您提供更多的精品教学资源!
?数学思考》教学反思新课程改革以后,每册教材中都增设了一个内容,那就是《数学广角》。这个内容的增设,渗透了一些数学思想方法:排列、组合、集合、等量代换、统筹优化、数学编码、抽屉原因等,这些数学思想方法对于开发学生的智力,发展学生的能力,促进学生的进一步发展都是有利的。
总复习中也有这一块内容,由于这部分内容涉及的知识多,且难度比较大,所以在复习时不可能像前面那些知识一样进行系统的整理,只能对一些主要的内容进行必要的复习,所以在这个内容的复习中,我关键就渗透一个重要思想:化难为易。
复习中选取的找规律、排列组合、逻辑推理都是学生今后学习数学要用到的重要的数学思想方法。为了降低学生的思维难度,教学中采用了列表、图示等方式,把抽象的数学思想方法尽可能直观地显示给学生。在学习这个内容前,我请孩子们对这个内容进行了预习,课堂上进行有效的交流,尤其重视方法的的归纳和应用,加深学生对这些知识的理解,从而提高学生对这些数学思想方法的掌握水平,把培养学生解决问题的能力这个目标落到实处。如找规律这个内容,6个点可以连成多少条线段?8个点呢?点少的时候,咱们可以动手连一连来数出线段数,但关键还是要从连线的过程中发现连线时的规律。书中的算式是1+2+3+4+5=15(条),而有一个学生是这样列的:5+4+3+2+1=15(条),他有自己的理解:6个点,开始可以从其中一个点出发与另外5个点相连,连5条线段,换个点与其它点相连,只能连4条,依此类推。相当ok的想法,规律也很快就找到了,化难为易成功了!
数学思考教学反思篇3
?数学思考》是人教版六年级下册《整理和复习》这一单元的一节教学内容,它充分体现了新教材的特点,对发展学生的空间观念、形象思维、解题策略以及数学语言的表达能力等方面都有着举足轻重的作用。此节内容选取了三道极具代表性的例题,融合了整个小学阶段所涉及到的数学思想方法,其目的是为了进一步巩固、发展学生找规律的能力、分步枚举组合的能力及列表推理的能力。我执教的是例7:六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有a、b、c;第二次有b、d、e;第三次有a、e、f。请问哪两位班长是同班的?
“数学思考的编排意图是什么?我们应该给学生创设怎样的学习机会?”这是我在课前思考的主要问题。数学思考也能像学习常规内容那样给学生以方法和技能为主的形态展开学习吗?或者说它更应偏重于什么?我觉得所谓数学思考,应该在思维的广度和深度这两个点上展开会更有价值。应偏重于让学生经历数学思考的全过程,在其中体验数学探索的乐趣和困惑,真切的去感受数学与生活的联系,并从中给予学生个性化思考与能量释放机会。
就本节课的内容而言,学生之前尽管已经解除了比较多的数学广角系列安排的内容知识,但前后的知识联系看起来并不紧密,不过数学的思想方法的熏陶却是一贯的:都强调数形结合,都强调合作探讨与交流,也都强调策略与方法的优化等,尤其是注重数学化思想的渗透。鉴于此,本课在设计时,我就比较注重让学生在参与过程中将思维充分调动起来,重视 “说”的过程,在“说”的过程与基础上在进行对比交流和优化,并相机渗透数学化的思想,体悟数学的简洁美。学生只有在借助表格说思路的过程中能够充分意识到其价值,才会认同,才会自觉加以运用。这种运用的目的是对方法的认同,并非要在一节课中做对太多的推理题,这也不现实,因为也不可能有那么多的时间。毕竟,严密的推理尤其是信息条件比较复杂的更是挺费时间的。如果学生能在课后对推理知识有个比较高的热情,并且在以后遇到同类问题能够想到运用这种方法去尝试解决,应该说就已经达到了本课的基本目标。
纵观全课,我认为最大的成功在于充分体现了浓浓的“数学味”:通过直观教学,数形结合,以简驭繁,让学生的探究有目标,学生的思考有深度,学生的交流有实效,学生对数学思考的认识更深刻,学生解决问题的能力也确有提高。
我的困惑是对教材中表格的处理,是否该发放给学生?如果让学生自己去设计,能顺利达到同样的目的吗?如果直接发送,是不是前功尽弃?又是否存在牵着学生鼻子走的嫌疑?
数学思考教学反思篇4
数学思考主要是通过三道例题进一步巩固,发展学生找规律的能力,分步枚举组合的能力和列表推理的能力。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学解决问题比较常用的方法之一。反思课堂教学,我注重了以下几点:
一、注重数学学习方法的指导
现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。
本节课我注重了数学思想方法的教学,开课时,出示一个点,问:可以连几条线段?学生不假思索的说:一条。在片刻安静之后,学生突然恍然大悟,立刻反应:不能连成线段,因为线段有两个端点……接着在黑板上又点一个点,问,两个点之间可以连几条线段?(一条)。在学生及其兴奋的时候,我不再一个一个添点,而是一下点了8个点,问:8个点之间可以连多少条线段?学生喊着8条、10条……然后是相互的争论,互不相让。在学生兴奋的时候,我说:究竟是几条呢?给你们一个建议:在纸上画一画、数一数。由于点比较多,想一下子数清楚并不是一件容易的事。大约1分钟之后,我又说:点多了,想比较快的数出可以连多少条线段不容易,怎么办?有的学生根据以前的学习经验,想到先研究点比较少的情况,找到规律后,再应用规律研究点比较多的情况。在这里我给学生建议,利用表格的形式记录是否更清楚呢?渗透了由难化易的数学思考方法。学生从2个点开始连线,逐步经历连线过程,随着点数的增多,得出每次增加的线段数和总线段数,初步感知点数、增加的线段数和总线段数之间的联系。让学生经历丰富的连线过程后,整体观察和对比表格中的数据,从而进一步发现每次增加条数就是点数-1,接着让学生在发现中提升规律,从而解决复杂的问题。学生不仅学到了点连线段的方法和知识,还体会到了研究数学问题的方法,真是受益匪浅。
二、注重了学生解决问题能力的培养。
学习数学的目的,不仅仅是应用所发现的规律来解决简单的数学问题,更重要的是渗透数学思想,指导学生的研究的方法,使学生能够应用所学的方法,自主的解决在学习和生活中遇到的更多的数学问题,体会成功的喜悦,从而体会数学学习的重要性。所以在教学数学思想时,在引导学生研究了“以平面上几个点为端点,可以连多少条线段”之后,出示了练习十八的第3题:多边形的内角和。在研究的时候,为学生学生提供了画有“三角形、四边形、五边形……”的表格,学生根据刚才研究的经验,以小组为单位研究其中蕴含的规律。在交流的过程中,学生说说自己是怎样的研究的,为什么多边形的内角和是(边数-2)×1800。在学生发现规律之后还要学生反过来思考这样的规律所形成的原因。这样的教学让学生学会用数学思维方式去解决日常生活中的问题,进而培养学生的应用技能及创新精神。并且让学生学以致用,灵活运用之前发现的连线问题的规律,解决新的数学问题,培养学生迁移能力。整个过程都在逐步地让学生去体会化难为易的数学思想,更深刻的理解如何将数学问题化繁为简,运用数据学的不完全归纳法总结规律、验证规律并运用规律去解决较复杂的数学问题。
三、动手操作仍是数学研究不可抛弃的方法
数学的这种抽象性,使得有些孩子学习数学时,会有困难。在研究数学规律的过程中,可以为学生提供多种操作的手段。可以是实物操作、可以是在纸上的写写画画,使学生在动手的过程中,将抽象的数学问题具体化。在实际的观察、分析、提炼的过程中,才能更深刻的理解问题的本质,发现有价值的规律,从而也培养了学生的解决问题的能力,渗透了问题研究的方法。并且常年的实践证明,孩子自己操作并从中有所得,学生从实践操作中找到规律,同时也获得发现规律后的快乐。所以在教学中,根据学生的年龄的特点及数学知识的基础,给学生充足的时间,在图中连线,将多边形分割成若干个三角形,根据三角形的内角和来研究多边形的内角和。在这个过程中,鼓励学生多角度思考问题,培养学生从不同角度去观察问题、解决问题,让学生思维得到训练。
在教学设计的时候,我关注了这些问题。但在实际教学的过程中,由于学生的课堂生成是随机的,在研究若干个点之间可以连多少条线段的过程中,注重了学生的规律的总结,但是忽略了存在这种规律的原因。比如:”每增加一个点,所增加的线段的条数就是点数-1”,终于等到学生发现了规律,我就迫不及待的引导学生总结最终的规律,而没有引导学生反思一下,为什么会有这样的现象,使学生更清楚的理解规律,进而进一步应用规律灵活的解决后续遇到的各种数学问题。这个失误也说明,在公开课中,教师还是没有沉住气,仍然有走教案的迹象,我还要继续不断的修炼自己,以使自己的驾驭课堂的感觉更游刃有余。
数学思考教学反思篇5
再次见到了范博士感觉格外亲切。就像卢博士介绍的那样,二次培训就是好,不用过多介绍,因为大家都是熟人。
范博士的讲座主题是《助力思维过程——让儿童学会思考》。范博士轻声细语,娓娓道来,听起来如沐春风。让教语文的我听得津津有味。范博士说:“学数学学什么呀?就是学那些数学知识吗?”当时我想学数学的目的应该是学会运用吧?用所学知识来解决生活中的问题。可是范博士却出示了这样一句话:数学是教人思考的!
这是一句耐人寻味的话,值得每位教师认真思索。是啊,教数学教什么呢?只是让学生知道一加二等于三吗?只是让学生死记硬背地记住公式吗?不,当然不是。相对于语文来说数学更能引起学生的思考。只有会思考问题,才能解决问题,才会有所创新,不是吗?这可是最基础的啊!人与动物最大的区别就是会思考啊!如今却需要专家们一再强调,可见我们的教育真的需要改革了。
范博士从以下四个方面展开:1.图形直观,让思考看得见。2.情景直观,让思考有基础。3.教学工具,让思考有支架。4.程序清晰,让思考有线索。
范博士用一个个具体的实例,让看似简单的加减乘除教学处处渗透着数学思想,让看似简单的加减法教学处处玄机。范博士问我们:“为什么有的孩子学得快,有的孩子学得慢?学得快的孩子和学得慢的孩子有什么不同?”范博士总结说学得快的孩子是因为他们会思考。他们遇到新的问题,会创新。可是,也有不少同学,遇到新的问题就束手无策了。
这样的同学我们可以通过画图来帮助他们思考。正如范博士所说“空想不如听见,听见不如看见。”的确,图形直观形象,一目了然,让学生一看就懂。斯蒂恩也说:“如果把一个特定的问题可以转化为一个图形,那么就整体的把我了问题,并且能创造行地思索问题的解法。”
创设情境,也能帮助学生思考。可以借助情景将数直观,可以借助情景将概念直观,也可以借助情景将数量关系直观。
例如在教学乘法分配率时,就可以把具体的数据看做某种商品。可以理解为合着买和分开买的问题。就容易理解和记忆了。
范存丽博士的讲座让我受益匪浅,我想这些教学思想同样可以运用到语文教学之中,语文教学同样可以教人思考。不仅仅是语文和数学,任何学科都应该注重培养学生思考和创新的能力。
数学思考教学反思篇6
数学思考的复习难度是很大的,涉及的范围比较广,主要内容是每册的数学广角的内容,小学课本12册中,每册都有数学广角,并且每一个数学广角的内容之间都没有联系,基本是都是单独的数学思考方法或数学思想。
所以,针对上面的情况,再加上数学广角的内容本身就是个难点,如果教学起来相对单独较大,这个内容就应该一一的复习,尤其像鸡兔同笼问题,可以用假设法也可以用方程法,这两种方法重点复习一下。还有刚学习的抽屉原理,也是挺难理解的一个内容,再重点复习一下。还有找次品问题也是比较抽象的内容,一是回顾复习一下课本,二是记一下规律。还有烙饼问题也还是比较麻烦,当时讲的时候就比较麻烦,所以再回顾一下记忆一下规律。还有植树问题的三种情况,一端栽树,两端栽树和两端都不栽树的情况,课数和间隔数的关系。
像搭配问题算是比较简单的内容,比如三件上衣搭配两条裤子一共有几种穿法,这样的问题所有学生基本都没有问题。还有排列组合的题目学生只要细心一些也问题不大,一般是打电话问题,只是组合问题,不用考虑顺序问题。但是几个人排队照相问题就要考虑顺序问题了。
总之,学生在做题的过程中,如果出现问题,再及时的进行讲解和纠正。