三角形内角和教学反思反思6篇

时间:2023-03-26 15:25:40 分类:教学工作

作为教师的首要任务就是将教学反思写好,写好教学反思是可以帮助我们及时发现自己教学过程中的不足的,下面是加分文档网小编为您分享的三角形内角和教学反思反思6篇,感谢您的参阅。

三角形内角和教学反思反思6篇

三角形内角和教学反思反思篇1

?三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

一、创设情境,营造探究氛围。

怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?

二、小组合作,自主探究。

“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

三、练习设计,由易到难。

探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。

这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。

三角形内角和教学反思反思篇2

在“三角形内角和”这一内容的教学时,采用的教学方式是教给学生测量或者是撕拼的方法,然后得出结论,进行应用。虽然可以节省时间,短期内收到较好的效果,特别是要求学生把结论给记住,学生应用结论解决相关问题一般是不会有困难的。但把数学知识的发生过程轻描淡写,缺乏探究过程,这样学数学,学生感觉学得累,很乏味,在他们的感受中,数学渐渐地变成枯燥无味的了。本节课应着眼于学生的能力和学习数学的兴趣,上课一开始,可通过创设动画的问题情境,以较好地激发了学生的学习兴趣,然后给学生提供一些材料,让学生以先独立思考再合作的方式,为学生留有足够的空间去探究出结论。学生通过测量、撕拼、折叠等方法,探究出三角形内角和的结论。方法不是唯一的,对于学生通过独立思考出来的解决问题的多种策略,教师适时给予鼓励表扬,特别是对学生解决问题的思维方法给予充分的肯定。在这一过程中,学生又出现不同的理解和观点,产生真实的辩论,从而更深刻地理解了“三角形内角和是180度的结论。如此学生收获的不仅仅是数学知识,更多的是对学习数学的兴趣和信心,获得的是解决问题的策略和方法。

而后,通过拓展应用环节,再让学生通过应用练习和发展性练习,既巩固了本节课的知识,又培养了学生思维的灵活性和深刻性,使学生进一步深入理解了“任何三角形内角和都是180度。”这一结论,并大胆猜测推算出长方形和正方形的内角和。

三角形内角和教学反思反思篇3

整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:

1、精心设计学习活动,让每一个学生经历知识形成的过程。

为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。

2、立足长远,注重长效,不仅关注知识和能力目标的落实,更注重数学思想方法的渗透。

在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。

3、遵循教材,不唯教材。

本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。

4、不足之处:

学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。

三角形内角和教学反思反思篇4

三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。

在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。

本课新知识传授很好的把握三个环节:

1、重视动手操作,让学生在探究中收获知识。

?数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。

2、在动手操作中验证猜想。

让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。

3、重视问题预设,培养“空间观念”。

“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。

作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!

三角形内角和教学反思反思篇5

今天学习的是《三角形内角和定理》第二课时,上节课有活动,下课晚了8分钟,学生小组分任务时,组长领任务,个别组长去厕所,组员忙着来领任务,热情很高,紧接着忙着抄题,有些学生忙着问问题,场面很是喜人。

上课用了十多分钟的时间对学、群学,各小组成员在本组展示中很积极,有的组长和成员追着我问问题,积极性很高,张思敏、吴桐桐语言通畅,声音响亮,进步很大,尤其是吴俊杰展示的调理清晰,效果很好,成为一亮点。

本节课的知识点,是“几何证明”的重要组成部分,这节课所涉及的内容对于证明题的学习显得十分重要。其原因在于如何添加辅助线、进行几何证明的首次学习,学生对此普遍感到困难;本课从“数”与“形”两个角度对辅助线的作法进行了分析与探索。 学生以动手实践、自主探究、合作交流的学习方式进行。我承担了学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了富有挑战性的问题情境,让学生分组合作、自主地去探究和发现方法,本节课我的主导作用的发挥是比较好的,主要体现在让学生的主体得到充分的展示。巧妙地化解了难点。

本节课的知识点,学生讲解定理的推论,应用,证明,掌握的较好,学生的积极性之高,出乎我的意料,徐淑瑶、崔秋月出现了一题多解,并且方法简单,得到了大家的好评,另外,参与度较高,但语言、站位等有待提高。

今天这节课,学生准备的虽然不是很充分,但效果不错,学生说这节课过得真快,心理很高兴。

我想,教师要想使学生感受到学习的快乐,就必须让学生体验到靠自己力量获得的成功,体会到探究与发现带来的乐趣。给学生一个展示个性、享受成功的机会。创设民主和谐的氛围,有助于减轻学生的心理负担,使学生的个性见解自由表达,独特做法是引导学生主动展示。例如:证明方法的多样性,反映学生思维的多样性,学生个性的多样性;放手让学生自己思考、展示、小结,体现学生的个性发展。

本节课我多次深入到有学习困难的学习小组,参与探究,引导他们发现,解决遇到的问题。因为每个学生都有按自己的选择参与学习的权利。都受个体已有认知水平和经验的限制,学生的学习很可能“遭遇”障碍,这常常会引发学生的失败感,降低学生学习的自信心,所以老师要适时鼓励,使学生享受到成功的喜悦。享受到一次成功,就会激励学生以更大的努力去追求更大的成功。

三角形内角和教学反思反思篇6

探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去量,得到三角形的内角和都在180°左右。

一、“给学生一些权利,让他们自己选择。

给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。

“是否任何三角形内角和都是180°?”这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。首先让学生计算出已经测量出的三角形内角和,面对有些小组的学生量出内角和的度数要高于180°或低于180°,学生讨论一下有哪些因素会影响到研究结果的准确性。

再引导学生思考有没有更简单快捷的方法验证三角形内角和是180°呢?带着这个疑问,小组内讨论,之后用自己喜欢的方法试一试。通过学生自己撕各类三角形,再把各个角拼在一起,从而验证了三角形的三个内角都能拼出一个平角,由此获得“三角形的内角和是180°”的结论。接着让学生合作,进行折叠三角形,算出折成后的三角形的内角和仍然为180°,再一次明确:不论三角形的大小如何变化,它的内角和是不变的。通过动手操作,为学生创设了解决问题的情境,以学生动手操作为主线,引导学生建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主题参与意识。同学们通过自主实践、合作探究完成了本节课的教学任务。

二、练习设计,由易到难。

在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

三、发挥多媒体的教学辅助作用

在用“折”的方法验证三角形内角和是180度时,虽然发言的学生边说、边演示,但大多数学生在实际操作时,还是没有取得成功。准确地找到三角形的中位线,使折纸的关键,但对于学生来说,先找中位线,再进行对折,再验证三角形内角和是180度,这却不是一件容易的事,因为学生没有对中位线的概念没有准确地认识。针对学生的这个特点,我选择不用语言讲解,而是利用多媒体直观演示。让学生在仔细观察、用心感悟的基础上,动手操作,给学生操作以正确的指引,保证学生体验成功,提高了教学效率。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。

四、存在的不足

在教学中只是让学生体验到各种类型的三角形和大小不同的三角形基本图形的内角和等于180度,在一些练习中出现了求变化得到的三形内角和时出现了认知的盲点,如,如两个完全一样的小三角形拼成一个大三形角形内角和等于多少?还有部分学生出现等于360度的现象,这些如能在课堂上让学生练习,学生对于三内角形内角和的性质的认识会更深入。

《三角形内角和教学反思反思6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭