六年级下册数与形教学反思8篇

时间:2023-01-19 15:10:41 分类:教学工作

作为一名老师,大家需要经常性地进行教学反思,编写教学反思能够提升老师的教学科研意识,加分文档网小编今天就为您带来了六年级下册数与形教学反思8篇,相信一定会对你有所帮助。

六年级下册数与形教学反思8篇

六年级下册数与形教学反思篇1

本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:

1、重视先猜想、再验证的思路来引入教学。

新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的'底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。

2、重视利用知识、方法的迁移来展开教学。

本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。

3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。

当然,需要注意和改进的地方是:书写格式的规范。

六年级下册数与形教学反思篇2

圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。从本节课教学目标的达成来看,较好地体现了以下几方面:

一、注重知识之间的内在联系。

圆柱的体积的导入,先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的,并让学生建立起更深层的空间几何概念。

二、引导学生经历知识探究的全过程。

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把柱转化成长方体。那么怎样来切割呢?此时利用生活中的“萝卜”引导学生思考。同学们有了圆面积计算公式推导的经验,经过思考得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。并利用多媒体动画演示,重现推导过程加深学生印象。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程中,认识得以升华(较抽象的认识——公式)。

三、注重学法指导和数学思想方法的渗透。

“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

本课中还存在很多不足在例如探究过程中没有充分的给予学生说一说、指一指的时间,在引导学生思考已知圆柱底面半径(r)和高(h)、已知圆柱底面直径(d)和高(h)、已知圆柱底面周长(c)和高(h)三种情况时,教师引导过多,应给予学生更充分的思考空间,让其考虑如果没有底面积,知道哪个条件也可以求圆柱体积。最后,在练习中缺少反馈,学生做完练习后,应及时做到直观反馈,总结优缺点,指导学生做题。

六年级下册数与形教学反思篇3

与老教材比,这是“比例”内容中新增设的内容,目的是架起比例与生活的练习——小学里的数学知识都能在生活中找到问题的原型。我认为这堂课的内容较为浅显,预计半个小时就能结束战斗,实际完成教学用了35分钟。

对教材的理解和把握:这堂课的价值是孕伏比例,为引出比例,即把任一个平面图形放大或缩小,变化后的边长与原图中对应边长的比是一定的(不变的)。所以,这堂课我抓住重点展开教学。例1解决对放大的比或缩小的比的认识和理解——前项表示现在图形的尺寸,后项表示原来图形的尺寸,前项大于后项则是放大的比,前项小于后项,则表示缩小的比。初步理解平面图形在缩放的过程中,每一条边缩放的比是一样的,初步感知缩放的过程中,形状不变,大小发生变化。例2的任务是学会根据一个比来画出一个放大或缩小的图形。通过“你发现了什么?”这个问题的讨论,进一步理解如下数学事实。某个图形按照一定的比放大(或缩小),则所有的边长都按照这个比放大或缩小,进一步强调大小变化,形状不变。

课堂拾贝:例2的教学中,学生已经完成了长方形的扩大或缩小的画图。我让学生观察上面的3个图形,并想有什么发现?学生的回答有,长方形按3:1放大后,所得的长方形的所有的边与原来对应边的比都是3:1。林燕说:扩大后的长方形的面积与原来长方形面积的比是9:1,缩小后的长方形与原来长方形的面积比是1:4。我在肯定林燕的发现后,强调图形的.放大或缩小特指构成图形的边长的放大或缩小。特别提出学生对题目的意思会产生误解——即在画第二个缩小的长方形时,去把扩大后的长方形缩小——所以,我建议教师可在例题2“再按1:2的比画出长方形缩小后的图形”中的长方形之前加上“原来”两个字。

“试一试”完成后,重点得出两点:按2:1的比放大这个直角三角形,只需先画出两条直角边就行了——即两条直角边决定了直角三角形的形状和大小。学生量出斜边长度后,发现他们的比也是2:1。再次强调:图形的放大就是按照一定的比把所有的边放大,实际操作时只需画出几条关键的边就可以了——如长方形只需画出一条长和一条宽,正方形只需画出一条边长。

练习九第一题中的第一个问题,学生虽然都知道5号图形是1号图形放大后的图形,但是按照( ):( )的比放大的,一部分学生不会写了——原因是思维定势,前面遇到的所有比都有一个项是1。结果学生的答案出来两种:3:2,1.5:1。在这道题目的比的书写上,我是这样指导的:既然你认为5号是1号的放大后的图,那么什么比应该是一样的?学生说出现图与原图长的比是9:6,宽的比是3:2,化简比后得到都是3:2,所以写3:2。我补充“写1.5:1”也是可以的。

六年级下册数与形教学反思篇4

本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

一、在教学过程的设计方面

1、导入时,力求突破教材,有所创新

圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、

流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

2、新课时,要实现人人参与,主动学习

学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

3、练习时,形式多样,层层递进

例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型。

a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:v=sh。

b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:v=πr2h。

c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:v=π(d/2)2h。

d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:v=π(c÷π÷2)2h。

e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:v=π(s侧÷h÷π÷2)2h。

因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

二、在教学策略方面

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

三、在教学技能方面

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

四、存在的问题

不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。

另外,在练习设计上,题形虽然全,但觉得题量偏多,因为这部分练习涉及的计算多、难,这样练习题还需精心设计。

六年级下册数与形教学反思篇5

圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生在学习的过程中体会到数学给自己带来了巨大的成功感和喜悦感,我们老师这样才能寓教于乐,从而达到了事半功倍了。

本节可的教学内容是九年义务教育六年制小学教学第十二册﹙人教版﹚《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:v=s和,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

六年级下册数与形教学反思篇6

接着通过四个例题来考察应用:

1.爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

2.爸爸买了一个随声听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

3.王阿姨600元买了打六折的衣服,原价多少钱?

4.一部手机原价4800元,现价4650元,请问手机打了几折?

之后带领学生总结出数量关系式:原价×折扣=现价;原价×(1-折扣)=节约。

最后通过课本中的做一做和练习二中的题目进行巩固和反馈。

通过学生的做题我发现,对于比较简单的题目,如“篮球原价80元,打六五折之后多少钱?”,绝大多数学生都能很快做出来;对于需要逆运算的第3题(王阿姨600元买了打六折的衣服,原价多少钱?),出错率还是比较高的;对于练习二的第3题(书店图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这套书原价多少钱?)有部分同学没有做出来。

我思考或许我应该把总结数量关系式那一步提前到出考察的4道例题前,学生知道了数量关系式之后,再做题目会更容易理解和掌握。课前也可以出示几道关于“求一个数的百分之几是多少”的题目,给学生提供多一个支架。从效果来看,我本节课的教学设计还是高估了学生的接受能力,另外,课堂上依旧有部分学生不爱听讲,不动脑筋,思绪游离于课堂外,对于他们,我虽说有时感到力不从心,但还是在尽力引起他们对数学的兴趣,嗯 加油吧!路漫漫其修远兮,吾将上下而求索。

六年级下册数与形教学反思篇7

在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。而且在教学的过程中,方法也有不同,同学很容易混淆。

第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于同学不知道如何区分,什么时候该怎么设。

第二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让同学理解这种方法的原理很重要,从同学的课堂和课后情况来看,很多同学其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。

根据同学的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于同学没有真正的理解比例尺的概念。例如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才干列出方程。这样就不用去顾和怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。

对于第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。

在同学出现问题之后,针对同学的情况,和时地给同学适当的进行归纳整理,会加强学的理解,协助同学更好的掌握!

六年级下册数与形教学反思篇8

图形的放大与缩小是比的实际应用,通过这部分内容的学习,使学生从数学的角度认识放大与缩小现象,知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点,并能在方格纸上按一定的比将简单图形放大或缩小。

根据学生对知识的掌握情况以及自己对教材的理解,我对教材做了一些处理。

一节课下来,自己认为比较成功的地方是:新课的引入,利用3张放大图片,让学生看,并说说看了以后有什么想法。课堂学生七嘴八舌,有的说都变大了;有的图1和图2看起来不舒服,图3看起来比较舒服;有的说,图1长变大了,宽没变,图2长没变,宽变大了,图3长和宽都变大了等等。通过观察这3张图片,让学生感受到虽然放大,但这个放大必须按一定的比来放大,这样视觉效果更好好。这样的引入不仅让学生头脑中留有这样一个印象,要想让图形放大,长和宽都必须得放大,而且也比较快的切入正题。图形放大与缩小的变化规律我从最简单的图形正方形、长方形着手,再过渡到三角形(因为三角形有一条斜边),最后让学生除了这3个最基本的图形联想到梯形、圆形等其他复杂的平面图形,让学生感悟到,平面图形的放大与缩小,只要抓住每个图形对应边长的比相同就可以了。

课堂上有待于改进的地方是:

①课前自己没有去认真的思考,结果提供给学生的2个材料,一个是按2:1放大,一个是按1:2缩小,材料比较单一,学生容易混淆。如果以后上课,吸取今天的教训,提供给学生的材料尽量丰富一点,缩小的材料换成1:3等比较好。

②2:1中前项表示什么,后项表示什么?虽然课堂上让多个学生说了,但有学生还是搞不清楚,以至于在做作业时,如第2个图形是按():()扩大或缩小的,错误的学生比较多。

③在研究图形缩小变化规律的时候,学生说缩小3倍,新课程标准实施以来,缩小3倍都不讲的,讲的是缩小到原来的1/3,课堂上自己不但没有给学生指出来,也跟着学生讲缩小3倍。

一节课下来,不成熟的地方有很多,以后在教材的研究上还得加把油

《六年级下册数与形教学反思8篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭