平行转教学反思5篇
完成教学反思可以提高老师的教学科研意识,通过写一份教学反思,老师一定都能从中吸取不少宝贵的教学经验,加分文档网小编今天就为您带来了平行转教学反思5篇,相信一定会对你有所帮助。
平行转教学反思篇1
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教具学具:自制长方形框架、方格纸、课件、平行四边形卡片、剪刀、三角板、直尺等。
教学过程:
一、创设情境,铺垫导入
1、(出示教具)这是一个长方形框架,它的长是6厘米,宽是4厘米,它所围成的长方形面积是多少?你是怎样想的?
(板书:长方形的面积=长×宽)
2、如果捏住这个长方形的一组对角,向外这样拉,(教师演示)同学们看看,现在变成了什么图形?(平行四边形)
3、你还知道关于平行四边形的哪些知识?(出示课件平行四边形)
4、这样一拉,形状变了,面积变了吗?
5、(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?(生:平行四边形的面积等于相邻两条边的乘积)
6、究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。
请同学们用数方格的方法来算出这个平行四边形的面积,(教师把长方形及拉成的平行四边形框架放在方格纸上,数一数它们的面积)数的时候要注意,每个小方格的面积是1平方厘米,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是18平方厘米,使学生明确拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积。)
7、看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1、用数方格的方法计算平行四边形面积。
(1)、出示面积和平行四边形相等的一个长方形。提问:数一数,这个长方形和这个平行四边形的面积相同吗?
(2)、小组讨论,观察比较两个图形的关系,提问完成表格。提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(3)根据你的发现你能想到什么?
2、图形转换
(1)、不数方格能不能计算平行四边形的面积呢?(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把这个平行四边形转换成一个与它面积相等的图形来计算它的面积呢?(能)可以转换成什么图形?(长方形)怎样将平行四边形转换成与它面积相等的长方形?
(2)四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作,小组汇报上台演示剪拼过程)边剪拼边观察思考:拼出的长方形和原来的平行四边形相比,面积变了没有?拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?(板书:平行四边形 底 高)
(3)(教师演示说明)这个长方形的面积与原来的平行四边形面积相等,这个长方形的长与原来平行四边形的底相等,这个长方形的宽与原来平行四边形的高相等。(板书连接符号)
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积怎样计算?(平行四边形的面积等于底乘高)
(板书:平行四边形的面积=底×高)
师:如果用s表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)(教师板书:s=ah)
4、出示例1(课件),例1给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)要求平行四边形的面积,必须知道什么条件?
三、层层递进,拓展深化
1、算一算,填空,(课件出示)指名回答。
(1)、一个长方形的长是5厘米,高是3厘米,这个长方形的面积是( )平方厘米。
(2)、一个平行四边形的底是8米,高是5米,这个平行四边形的面积是( )平方米。
(3)、一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是( )平方分米。
2、用手势判断对错(课件出示),先读题后再判断,并说说错误的原因。
(1)、把一个平行四边形割补成长方形,它们的面积相等。( )
(2)、一个平行四边形的底是7分米,高是4分米,面积是28分。( )
(3)、一个平行四边形的底是5米,高是4分米,面积是20平方米。( )
3、想一想 :(课件出示在一组平行线之间有两个等底等高的平行四边形图。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形面积相等)
四、总结全课,提高认识
反思一下刚才我们的学习过程,你有什么收获?
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?
平行转教学反思篇2
这堂课能围绕教学目标层层展开,先从身边的情景引入,激发学生探求新知的兴趣;接着让学生猜想平行四边的面积可能怎样求?再通过活动单一的内容用数格子的方法验证。学生都能数出它们的面积,在这个环节中学生做的很好。
接下来又用转化方法进行再次验证,仍然是以小组合作的形式进行,让学生自己动手画一画、剪一剪、拼一拼推导出平行四边形的面积计算公式。然后让学生到前面演示整个操作过程。在这过程中,我能用严密、准确地、有逻辑性的语言,富有层次性的问题层层深入的引导学生来探究、发现规律,得出结论,效果良好。接着我又向学生介绍了不一样的几种方法,可以让学生感受到方法很多,也可以让他们有再试一试的想法,可以可以发展他们的创新思维。而且,形象的多媒体课件为公式的推导起了一个很好地作用。
课件还很好的演示了平行四边形转化成长方形的过程,看起来很直观。但是本节可课也有不足之处,在书写板书时最后的那个平行四边形画的不好看,线没有画直;还有最后望了否定学生的另一种猜想边×边的方法不行。在今后的教学中我一定注意书写板书,注意课堂的完整性。
平行转教学反思篇3
本教学设计是在充分了解学生已有知识基础及仔细分析学生前测作业的基础上设计的,通过前测发现学生对“面积的转化”是没有基础的,在验证平行四边形面积过程中进行了两次验证。第一次,让学生自己验证,长方形的面积我们学过,这是旧知,平行四边形的面积是新知,把新知转化成旧知的方法叫做“转化“。转化是我们在数学学习中经常会用到的方法。得出转化的思想。第二次用转化的方法直接求平行四边形的面积。让学生学会转化,便于对三角形和梯形的面积的教学。
这样的一个思路的设计充分顾及了学生的知识基础与思维特征,让学生参与了整个知识的主动建构过程,“学习任何知识的最佳途径是通过自己的实践活动去发现,因为这样发现理解最深,也最容易掌握。”这节课我给了学生足够的时间和空间去动手操作,都是学生的智慧,然后让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正使学生在动手中学习,在动手中思考,为后继学习培养了能力与思维。
但科学、合理的教学设计真正要落实到课堂、收到意想中的效果,还需要教师有老练而娴熟的课堂操控能力,本人满怀信心地走进课堂,却是带着许多的遗憾结束课堂教学,那是因为学生的学习并没有做到扎实、有效,学生思维碰撞是那么的单一,反思原因,主要是许多的细节都没有按教学设计思路处理好。
平行转教学反思篇4
平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。教材首先提出:公园准备在一块平行四边形空地上铺草坪,如何计算这块空地的面积?这是学生在学习了长方形、正方形的面积后,提出的如何计算平行四边形面积的问题。
教材这样安排的目的是让学生面对一个新的问题,思考如何去解决教材提供了两种提示性的方法:一种是通过数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形的面积转化为长方形,然后计算出面积。通过本节课的使学生通过剪切、平移的方法理解平行四边形公式的推导过程,并能够运用公式解决实际问题。
本节课教学中,用长方形面积公式导入,由学生猜测、验证、再猜测、再验证的方法推导出平行四边形的面积公式。在此次过程中教师充分调动学生已有的知识经验,通过小组合作,把学习的主动权交给学生,最后通过习题巩固,使学生灵活运用平行四边形的面积公式。
平行转教学反思篇5
本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。