分数条教学反思7篇
作为一名老师,我们需要经常性地做教学反思,撰写教学反思能够提升我们的教学能力,以下是加分文档网小编精心为您推荐的分数条教学反思7篇,供大家参考。
分数条教学反思篇1
“分数的基本性质”是人教版小学数学五年级下册的内容,在小学数学学习中有着承前启后、举足轻重的作用。它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。基于这部分知识是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。所以这节课我采用“猜想——验证——反思”的一种研究性学习方式。
1、迁移引入,沟通新旧知识的联系。
学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始我设计了两组练习题,一组是利用除法中商不变的性质来解决,一组是利用分数与除法的关系来解决。为新知识的学习奠定基础。同时也在头脑中形成表象,便于学生学习下面的分数的基本性质。
2、充分发挥学生的主体作用。在教学分数基本性质时,并没有把这个性质灌输给学生,而是让学生在自主探究的过程中自己感悟。我先是让学生根据大屏幕上的涂色部分说出用哪个分数来表示,又让观察两个分数的特点,学生自然而然的得出两个分数相等。然后利用小组合作学习,在这些相等的分数中猜测,寻找分子、分母的变化规律,初步得出分数的基本性质。接着我又利用图形与学生一起验证他们所得出结论。这样的活动使得学生始终处于积极思考的状态,不但保持学习的积极性,而且增强了学生学习的自信心,使他们感到我会学,我能行。
当然,本节课出现的问题也很多:首先,在验证、交流环节学生们参与率并不高,在交流时也不主动,很多学生还停留在一知半解的状态。其次,猜想的验证过程过于单一,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。第三、在小组合作交流方面:本节课的设计中有两处合作交流:一个是在验证猜想时合作。另一个是在发现规律时合作探究,交流沟通。但学生的交流流于形式,没有起到真正的知识碰撞的效果,在今后的教学中对这个问题有待进一步的改进。第四,就像教研员张老师所说,我还是不够充分地信任孩子们,还是我说的太多,而学生说的少,放手的力度不够。
这节课上完后,我感触颇多,教学真的是一门永远留有遗憾的艺术,在以后的教学中,我一定会追求更务实的课堂。从学生的实际出发,因地制宜,提高自己的课堂驾驭能力。
分数条教学反思篇2
分数的意义是系统学习分数的开端,学生正确理解单位“1”和分数的意义十分重要,教学中我根据学生已学过的分数初步知识及及生活经验,提供丰富的感性材料,通过点拨引导,以图、数结合,排列整齐的板书,创设良好的情境,引导学生抽象概括出单位“1”和分数的意义,使学生从感性认识上升到理性认识。这样不仅有助于学生形成正确而清晰的概念,而且能教会学生学习数学概念的方法,并有利于培养学生抽象概括的能力。
以学生为主体,教师为主导,教材为主要依据,采取启发引导自主探索的方式,帮助学生把握学习重点,突破学习难点。学生已有分数的初步知识,在教学把单个物体看作单位“1”时教师要少讲,而采取学生自己边分学具边说出相应的分数的形式启发学生自己去创造学习,而教学多个物体看作单位“1”是教学内容是新知识,采取有效的教学措施,攻克这一难点。首先以生活经验为突破口,让学生分4支粉笔,理解分数的意义,以此为认识起点进行大量的探究性学习活动。包括:分6个学具说分数,分5个桃子说分数,分8个泥人说分数。
学生学习数学概念不能一蹴而就,要通过这一节课和以后的学习逐步加深理解。在这一节课中分数的意义内涵较丰富,且比较抽象,这就要通过练习巩固和发展学生的智能。首先将整节课设计成实践操作性的练习形式,既使学习新知也是让学生利用原有知识和生活经验,平均分一种物品后总是引导学生说出自己得出的分数。巩固新知的练习,围绕重点内容既有基本题、变式题,又有综合题和发展题,题型新颖而灵活,不仅能提高学生练习兴趣,促使他们运用所学知识解决问题,而且能在练中培养学生观察比较、分析判断、多向思考的能力。
新课程要求新的课堂要具有三个特点:
学习背景化就是把教学与学生的真实生活联系起来教学中我们应做到以学生熟悉的知识与用语,设计有意义教学;开展丰富多彩的活动,多种形式的交流与参与,充分发挥学生的特长,从集体合作到个别创新;
学习活动化就是师生共同参与创造性活动,以促进学习;在课堂上设计需要学生共同完成的教学活动并用正确的方式指导学生合作。
过程交往化就是通过对话进行教学,通过课程发展学习者的语言,提高学习者的素质。我们在教学中根据教学目标,与学生进行教学对话,尊重学生与教师不同的交谈互动方式,尽多提供各种机会促进生生、师生交流;确保这种交谈学生比教师有更多的发言机会。
数学教师的主要任务就是为学生设计学习的情境,提供全面、清晰的有关信息,引导学生在教师创设的教学情境中,自己开动脑筋进行学习,掌握数学知识。
我认为一节有效的数学课,应该是有合理的情境,有效的活动(观察、操作、实验、书写等),平等的交流(让学生在平等中参与各种形式的交流,充分表达学习过程中的感想,让学生在交流与碰撞中生成知识、方法和智慧),还要有精当的练习(内容要精、形式要活、思维价值要高),在这些过程中学生还要有积极的参与热情和良好的情感体验。我就是寻着这样的目标努力构建和谐生态的理想课堂的。在这节课中我主要通过六个方面入手组织学生学习分数:
一、在情境中引入
情境是教学内容的载体,是情感的诱因,是教学活动的平台,有利于激起兴趣,凝聚注意力,激活已有经验、形成思路策略,引发自主活动。小学生学习数学的情境大致有两种:第一种是现实生活情境,第二种是问题矛盾情境或知识顺应情境。课堂上我通过调查数据和实际测量的方法利用学生已有的知识和生活经验引入分数。
二、在观察中感知
课堂上教师的引导作用体现在向学生提供一定的学习材料,让学生通过观察获得感性知识,丰富学生的表象。平均分一个物体是学生已有的知识,让学生在观察中说出分数唤醒原有知识和经验为学生创新作准备。
三、在实践中体验
由于数学知识具有抽象性的特点,而小学生的思维是直观多于形象。采用动手操作,能帮助学生借助直观建立表象而形成概念。教师通过有效的操作活动,促进学生的多种感官参与活动。本节课重点就是引导学生把多个物体看作单位“1”,通过平均分得出不同的分数,这是对原有分数的拓展和扩充,这时就应该是在教师引导下学生的探索与创造活动,在我组织的操作活动中体现了活动、主动、开放的有机融合:分4支粉笔师生共同完成为学生自主活动提供方法和经验,后来的活动主要放手让学生自己做,这样让学生围绕重点开展自主性学习。
四、在交流中内化
苏霍姆林斯基说:“在手和脑之间有着千丝万缕的联系,这些联系起两方面的作用,手使脑得到发展,使它更加明智,脑使手得到发展,使它变成创造的、聪明的工具,变成思维工具和镜子。”新课标强调学生经历教学活动的过程,操作活动有助于学生亲身经历知识的形成过程。教学过程是师生之间、生生之间、教学内容和学生之间交往互动的过程,课堂主要是通过沟通实现的。在这个过程中语言和阅读起十分重要的作用。
语言是思维的外壳,有序的操作有利于学生形成清晰流畅的思路,发展学生的思维。课堂上,我非常重视学生将操作活动的过程用语言表达出来,让每个学生都有机会发表自己的想法,培养学生合作的意识和能力。引导学生用语言来表述自己操作的结果,促进了语言与思维的融合。我们可以看出在这样探究的课堂上,学生表现出极大的兴趣和积极性,出现了矛盾的冲突、思维的碰撞和灵感的火花,教师也获得了意外的收获。
阅读是学习的重要方式,我还十分重视学生自学能力的培养,学生的自学根据不同的教学内容可以是课堂前的也可安排在课堂教学之中,这节课我是把它安排在学生探索活动之后,让学生通过阅读教材实现与文本的对话,用经典的知识体系丰富自己在操作中的体验,深化。
五、在练习中发展
知识和技能依然是新课程的教学目标之一,我们要让学生通过知识技能的学习来促进学生自身的发展,课堂上我很注重让学生运用知识解决相应的数学问题,我整合教材内容,优选练习题,采用不同形式练习学生练习让学生在练习中发展(巩固知识、形成技能、发展思维、促进积极的情感)
六、在游戏中延伸
常见的数学游戏往往是用于调节课堂气氛,我认为好的数学游戏还应溶知识性、思维性和创造性于趣味之中,我设计了个游戏拓展了学生的知识,引领学生进一步学习的动机。
分数条教学反思篇3
不久前,在教学分数乘分数时,有一些反思,现整理如下:
}案例一
浙江版教材是这样安排和处理的:一台饲料粉碎机,每小时粉碎饲料1/2吨,3/4小时粉碎饲料多少吨?引导学生想:3/4小时粉碎饲料多少吨,就是求1/2吨的3/4是多少,算式是1/23/4。通过数形结合的方法引导学生观察和思考:1小时粉碎饲料1/2吨,1/4小时粉碎1/2吨的1/4,就是把1/2吨平均分成4份,取中的1份,也就是把1/2吨平均分成(24)份,取其中的1份。3/4小时粉碎1/2吨的3/4,就是取3个1/ (24),结果是 ,最后师生归纳分数乘以分数的计算法则。
【反思一】
这样的安排侧重于意义的学习,但由于例题的安排缺乏一定的问题情境和生活情境,比较枯燥和抽象,很难调动学生的求知欲望。因为学生的学习不是简单地接受知识,而是在体验和创造中学习。我们的数学教学应该从学生的生活经验出发,从学生已有的数学知识结构出发,基于这样的想法,在实际教学中,我进行这样的处理:
〖案例二
先创设问题情境地,分数单位乘以分数单位。课件出示一个边长为1米的正方形,面积为1平方米。然后,在正方形一角又出示一个小长方形,请大家估计一下,图中的阴影部分大约是多少平方米,用分数表示。(学生猜测、估计)。课件出示背景格子图,学生很容易就看出来整个正方形被平均分成了20份,而这个阴影部分恰好是1/20平方米;这个格子图把正方形的边长分别平均分成了4份和5份,即:这个长方形阴影的长和宽分别是1/4米和1/5米。学生已经知道长方形的面积是长乘宽,那么1/51/4和1/20平方米之间有什么联系?你有什么想法?指导学生进行交流
【反思二】
教学情境是一种特殊的教学环境,是教师为了支持学生的学习,根据教学目标和教学内容有目的地创设的教学环境。建构主义学习理论认为,学习是学生主动的建构活动,学习应与一定的情境相联系,在实际情境下进行学习,可以使学生利用原有知识和经验同化当前要学习的新知识。这样获取的新知识,不但便于保持,而且容易掌握迁移到新的情境中去。创设教学情境,不仅可以使学生容易掌握数学知识和技能,而且可以使学生更好地体验教学内容中的情感,使原来枯燥的、抽象的数学知识变得生动形象、饶有兴趣。从现代教学论的观点看,数学教师的主要任务就是为学生设计学习的情境,提供全面、清晰的有关信息,引导学生在教师创设的教学情境中,自己开动脑筋进行学习,掌握数学知识。
孔企平说,我们在课堂里讲的数学学科与数学家研究的数学是有区别的。数学家研究的数学学科是从概念、公理、定理出发的以逻辑体系为基础的数学,而我们给学生讲的数学则更多地建立在学生经验的基础上,是这方面生活经验的升华。所以,这样的设计充分考虑到学生的已有的知识经验,
但这样的设计显然对算理的学习不足,学习知识的过程中学生的体验也是不足的。另外,所有这一切,包括图形和数据,都是教师事先准备好的',学生的所有猜想与活动都是在老师所划定的圈子里进行,虽然我精心为学生创设了一个探索的情境,但是,学生还是被老师牵着鼻子走。
〖案例三
活动与问题:1、每人拿出一张长方形纸,折一折,表示出它的1/□,涂上颜色;再把这张纸的1/□看作单位1,表示出它的1/□,也就是1/□的1/□,把折出的1/□涂上然后把这张长方形展开看一看,涂色部分是这张纸的几分之几? 2、你能把刚才折纸的操作活动用算式表示出来吗?3、猜想与验证:涂两种颜色的阴影是整个长方形的几分之几?打开折纸并验证。4、把学生的算式和结果尽可能多的都写在白板上。5、小组讨论并发现规律。
【反思三】
?国家数学课程标准》中强调:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。 如何把一些抽象的数学概念变为小学生看得见、摸得着、理解得了的数学事实?这是每个数学教师在课堂教学中必须很好考虑的问题。许多成功的案例说明,让小学生动手操作是提高数学学习的有效策略之一,因为这样做既符合儿童的生理、心理特征,可以吸引他们把注意力集中到有意识的教学活动中来;又能使他们在大量的感性材料的基础上,对材料进行整理,找出有规律的现象,逐步抽象、概括,获得数学概念和知识,使抽象问题具体化。
基于这样的认识,在实践中设计本课时,有以下三个想法:
1、开放式的教学设计。把一张长方形的纸折成1/□,可千万不要轻视这个小小的□,它给学生的很大的空间和权利。我们常说,学生是学习的主人;这个□就是在把学习的权利还给学生;
2、让学生经历猜想与验证的过程,并在这个过程中学会研究数学问题的方法,有了大胆的猜想才会更有继续研究的欲望。
3、在亲身活动中感受数学。美国华盛顿儿童博物馆的墙壁上张贴着一句格言:我听见了,就忘记了;我看见了,就知道了;而我做了,就理解了。案例三的设计重视学生的动手操作,把较复杂的分数乘分数的计算方法,用折纸这一直观动作进行反映,有利于学生感受和理解计算方法。
现代教学论认为,每位学生都有潜力,教师的作用仅仅是激发这种潜力。因此,在小学数学课堂教学中,教师就应力求凸显学生生命的主体地位,创设一定的情境,激发其内在的发展潜力,放手让学生参与学习活动。让他们经历知识的发现、问题的思考、规律的寻找、结论的概括、疑难的质问乃至知识结构的建构等一系列的数学活动过程,使短短的一节课,时时充满生命活力。这是学生课堂生命活动得以充分展现的关键。作为教师,在设计教学活动时,要尽可能给他们提供动手操作的机会。但数学课的操作毕竟是学习意义上的操作,是一种特殊的动手活动,在组织操作活动时必须注意以下几点:一是要有明确的操作目的,切忌为了操作而操作,使活动本身流于形式。二是要给学生留有足够的思维空间。学具操作要注意适时、适量和适度。适时就是要注意最佳时机,当学生想知而不知,似懂而非懂时,用学具摆一摆,就会起到化难为易的效果。适量是指要控制使用的次数,活动的时间,并不是搞得越多越好。适度是指当学生的感性认识已积累到一定程度时,就应引导学生在丰富的表象的基础上及时抽象概括,掌握火候,使感性认识逐步上升为理性认识。
分数条教学反思篇4
分数乘分数的意义是分数乘整数意义的扩展,记住分数乘法的计算法则并不困难,但让学生理解算理难度就比较大了。所以这部分内容是本节课教学的重点,也是难点。教学中我主要是突出了实际操作和图形语言,使学生在实际操作中,直观体会分数乘分数的计算并能运用自己的语言进行总结。
首先在复习中,我先让学生理解分数乘整数的意义及计算方法,然后通过直观演示,依次折出长方形纸条的1/2,再取1/2的1/4和3/4,并让学生用乘法算式来表示这个过程,初步感受分数乘分数的意义和计算方法,并用语言概括,初步渗透了无限的思想;然后让学生猜想1/2×1/4=?由于学生已有了分数乘整数的基础,所以不难猜出:1/2×1/4=1/8,接着就让学生在实际操作中,借助图形语言,体会分数乘分数的意义,感受分数乘分数为什么是用“分子乘分子,分母乘分母”的方法,学生在折纸的过程中,体验到结果都相同,再借助教材中“讨论”的问题,鼓励学生讨论算式与图形之间的关系,通过类似几道题的“折一折、想一想、算一算”,让学生运用自己的语言小结分数乘分数的方法。
教学中充分借助学生已有的知识基础,通过观察、实验、操作、推理等活动,通过例题的直观操作,通过知识的迁移帮助学生理解了分数乘分数的意义,初步掌握了分数乘分数的计算方法。在探究活动中,让学生主动进行分析、观察、猜想验证、比较、归纳的过程,进一步发展学生初步的演绎推理和合情推理能力。
存在问题:
1、课上的很快,因此准备得有些匆忙,没有做过多准备,使得在练习和折纸验证猜想的环节花去了很多无谓的时间,直接导致后面练习十分匆忙,没有达到预期效果。
2、语言不够精练,没有很好调动学生,导致活动中学生参与的面比较小。
3、讨论1/2×1/4,1/2×3/4的结果这一环节处理的不好,现在想来是否可以直接出示算式,然后放手让学生用不同方法去讨论结果,再去猜想算法。
分数条教学反思篇5
“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。用故事情景引入,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。最后运用知识,深化对分数的基本性质认识,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
本节课教学设计突出的特点是学法的设计。从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习设计的。具体表现在:
1、学生在操作中大胆猜想。
注重让学生自主探索、合作交流。设计者只是提供了一个材料,引导学生充分地观察、讨论、交流,而不是填鸭式地讲解,使学生在探索研究的过程中,发现分数的基本性质,并且注重联系旧知,完善学生认知结构。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发他们主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性。在较为宽泛的时空中,鼓励学生用自己的方式来证明自己猜想结论的正确性,凸显出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学都强调学生自主参与,使学生获得成功的体验。
3、让学生在分层练习中巩固深化。
练习力求紧扣重点,做到新颖、多样、层次分明,有坡度,加深了学生对分数的基本性质的认识,激发了学习的兴趣,活跃了课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
分数条教学反思篇6
今天教学了分数乘分数(例4和例5),在课前研究教材时就觉得不太好理解,因为例题中都有两个单位1, 比如画斜线的1份占1/2的1/4,此时的单位1是1/2,但是对于整个长方形来说是1/8,此时的单位1是一个长方形。
后面的1/2的3/4,以及对例5的两个算式的理解都是同出一辙。但要注意两者教学时的区别:例4是让学生从图中猜想(感知)出两个分数乘分数的结果。例5是让学生先猜算结果,再用图来验证。二者在教学中的顺序是相反的,但其目的都是让学生从图形直观感知进而理会出分数乘分数的计算方法。
但是从学生的反馈来看,好像不能够充分理解,确实是太抽象了,虽然有图的辅助。分开来看都能理解斜线部分是1/2的1/4,又是这张纸的1/8。但是为什么1/2的1/4就是1/8呢?这其间可是隐含着两个不同的单位1啊。学生能转得过来吗?单靠猜想感知行吗?教学时我是照书按步就班的教的,但有不少学生好像钻到云雾里去了。
为什么呢?怎么办呢?
原因很简单太抽象了。
办法是有的化抽象为形象:我们来看看练习九的第1题,与例题的最大的区别在于例题是在数之间思考,练习中的第1题是在数量之间的思考。不要小瞧这一点变化,借助数量来理解就比例题数之间的理解要容易得多。
本课的教学目的是教学分数乘分数的计算方法,前面的几个例题都是借助具体的数量让学生理解算理的,而分数乘分数比前面的几个例题都复杂些,但是却摆脱数量而抽象成数,学生的思维难度陡增。为什么不借助数量呢?如果把例题转换成像练习九第1题这样的情境,学生会很容易列式,也比较容易理解算理。在此基础之上,再抽象成数,如例题式样的,学生学起来会好得多。]
分数条教学反思篇7
xx省xx市实验小学的xx老师执教一课,朱老师提出要“帮助学生理解真分数和假分数的意义,准确把握真分数和假分数的本质特征”。课前朱老师做出这样的思考:“学生怎样才算真正理解了真分数和假分数的意义?首先要结合具体的情境,让学生经历假分数的形成过程,感受并认同假分数产生和存在的合理性。其次,从学习基础分析,当学生面对一个真分数时,已经能从多个不同的角度去理解,并用自己的方式作出解释。比如,可以从部分与整体(一个物体或一个群体)的层面进行解读,也可以理解为两个量之间的一种关系,即一个量相当于另一个量的几分之几。我认为,只有当学生看到一个假分数时,能利用已有的经验从不同的维度去解读它,对它的理解程度能与真分数等同了,才算真正实现了假分数意义的构建。”
笔者在课前调查中发现, 学生们对于分数的认识大致如此:讲一个整体平均分成几份,这样的一份或者几份可以用用分数表示。比如一个月饼平均分成4份,有这样子的2份可以用分数四分之二来表示。但是,学生的认知中还是趋向于认同分子小于分母的情形。这就是学生实际和教学内容之间现实的而又不可回避的矛盾。那怎样解决矛盾?
教学片断:
师:你能用自己喜欢的方式表示出四分之一吗?
学生个性化画图。
教师和学生从四分之一开始,每一次增加一个分数单位,学生很自然也很顺利地完成。
师:看着这5个分数,你有觉得谁最特殊呢?
生:四分之五。因为分子比分母还要大。
师:还有谁比较特殊呢?
生:四分之四。分子和分母一样大。
师:像这样子分子大于分母或者分子等于分母的分数,叫做假分数。
师:前两天的学习我们对分数已经有了新的认识。你能在括号内填上自己喜欢的数,并画图表示这个分数吗?
笔者在课堂巡视时看到了大多数的学生都会选择比4小或者等于4的数,并能正确画图表示.
可以看出,学生对于分数的认识有了质的飞跃,即“学生认识到假分数在形式上与真分数是不一样的,但其实质都是分数单位累加的结果。”