长方体和正方体的表面积2教案8篇

时间:2024-12-29 10:45:03 分类:教学工作

为了提高课堂效率,教案中应合理安排每个环节的时间,教案的成功与否,往往取决于教师在实践中所获得的经验和启发,以下是加分文档网小编精心为您推荐的长方体和正方体的表面积2教案8篇,供大家参考。

长方体和正方体的表面积2教案8篇

长方体和正方体的表面积2教案篇1

教学内容:苏教版六年级数学

教学目标:

1、通过观察、操作等活动认识正方体和正方体的展开图,能在展开图中找到长方体和正方体相对的面,能判断一些平面图形折叠后能否围成长方体、正方体。

2、初步感受平面图形与立体图形的相互转换,发展空间想象能力。

3、进一步感受图形学习的乐趣,增强合作意识。

教学重、难点: 引导学生观察相对的面在不同展开图上的分布情况,发现其中的规律。

教学准备:

教师准备:记号笔、磁铁、长方体和正方体展开图纸12张。

学生准备:一把剪刀、一个长方体、一个正方体纸盒及课本第123页上的图形

教学过程:

课前热身:我们课前先来欣赏一首古诗好吗?出示古诗,全班齐读。

一、激趣导学

1、出示中秋节商店的图片。

师:瞧,再过几天就是中秋节了,商店里卖什么的特别多?(月饼)王老师也想买个月饼礼盒送给家里的老人。

(出示)从数学的角度看,漂亮的包装盒是什么形体的?(长方体、正方体)

2、师:它是怎么做出来的?你知道吗?(出示各种展开的盒子)

(出示课题)。

二、探究解决

(一)初步感知正方体展开图

1、学习例题,出示正方体,依次说出相对的面。

请一个同学上台来剪。

将剪好的展开图放在实物投影上。

问:观察展开图,你发现了什么?

师:同学们想象一下,左右两个面有点像你头上的哪个部位?(两只耳朵)

2、师:这两只耳朵还可以长在哪儿?

师问:想象一下这两个图形沿虚线折叠能围成正方体吗?怎么想的?(出示不对称的图形。)

出不在同一边了,指名学生上来说一说。

引导学生说出:先确定下面,然后在脑海中想象,依次确定后面、上面、右面、下面、左面、前面。

师小结:今后我们在解决此类问题的时候,就可以用边想象边标注的方法。(板书:想象、标注)

(二)、深入认识展开图的规律

1、师:刚才的正方体是按规定的棱展开的,你能沿着其他棱把正方体展开吗?请你用自己动手试试。

活动提示:1、沿棱剪开,不能剪散。2、如果你的展开图黑板上没有,请贴上来。

师:请同学们仔细观察黑板上的展开图有没有重复?将翻转后和旋转后重复的展开图去掉。

师:请同学们数数,一共发现了多少种展开图?

2、面对这些无序的展开图,让我们给它分分类好吗

学生汇报,板书共分四类的方法。

3、找规律记忆的方法。

4、火眼金睛试一试

5、判断(抢答)

(三)长方体展开图的学习

1、出示:拿一个长方体纸盒,沿着一些棱剪开,看看它的'展开图,并与同学交流。

要求:展开后交流一下相对的面有什么特点?

引导总结。

长方体展开图也有11种,出示。

三、拓展延伸

1、"练一练"。

学生打开书独立完成。

2、练习题

(1)出示要求:先想象,后标注,再验证。

(2)学生独立完成。

(3)介绍看互相垂直的棱的方法。

3、思考题:小壁虎的难题

4、欣赏展开的美

其实,许多的立体图形都是可以展开的,让我们一起来欣赏一下好吗?

四、总结升华

出示全课总结让学生说一说

长方体和正方体的表面积2教案篇2

教学要求

1、根据正方体特征,推导出正方体表面积的计算方法。2、学会解决实际生活中有关长方体和正方体表面积的计算问题。3、培养学生思维的灵活性。

教学重点正方体表面积的计算方法。

教学用具教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。

教学过程

一、创设情境

1.看图并回答。(投影显示)

(1)什么是长方体的表面积?

(2)怎样计算这个长方体的表面积?

2.看看各自准备的正方体回答问题。

(1)什么是正方体的表面积?

(2)正方体6个面的面积怎样?

(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?

师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)

二、实践探索

1.小组合作学习----正方体表面积的计算。

①题中的棱长就是每个面的什么?

②你能算出这个正方体的表面积吗?

③小组合作,寻找计算方法。

3×3×6或者32×6

=9×6=9×6

=54(平方厘米)=54(平方厘米)

说明:上面两种做法都对,32表示2个3相乘。

2.教学计算长方体和正方体某几个面的面积。

在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。

(1)帮助学生分析题意。

①售米的木箱是什么体?

②“上面没盖”就是没有哪一个面?

③要求的问题,实际上是算哪几个面的'面积之和?

(2)再让学生分小组讨论解答方法,只列式不计算。

(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。

三、课堂实践

做第27页的“做一做”,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。

四、课堂。

学生今天学习的内容。

五、课堂实践

做练习六的第5、6、7题。

长方体和正方体的表面积2教案篇3

教学目标:

通过练习使学生能熟练地求正方体、长方体的表面积。

教学重点和难点:

重点:正方体、长方体的表面积的计算。

难点:正方体、长方体的表面积的计算。

教学媒体:教学平台

课前学生准备:课堂练习本

教学过程:

课前准备:

长方体体积计算公式:v=abh 正方体体积计算公式:v=a3

长方体表面积计算公式:s=2(ab+ah+bh) 正方体表面积计算公式:s=6a2

练习

1. 计算下面形体的表面积。(单位:厘米)

(1)解:

(2)

(1)s=2(ah+ab+bh)

=2×(6×2+6×1+1×2)

=2×(12+6+2)

=2×20

=40(平方厘米)

答:长方体的表面积是40平方厘米。

(2)解:s=6a2

=6×62

=6×(6×6)

=6×36

=216(平方厘米)

答:正方体的表面积是216平方厘米。

(3)解:s=2(ah+ab+bh)

=2×(3×12+3×1+1×12)

=2×(36+3+12)

=2×51

=102(平方厘米)

答:长方体的表面积是102平方厘米。

(4)解:s=2(ah+ab+bh)

=2×(4×4+4×3+3×4)

=2×(16+12+12)

=2×40

=80(平方厘米)

答:长方体的表面积是80平方厘米。

(5)解:s=2(ah+ab+bh)

=2×(5×5+5×1+1×5)

=2×(25+5+5)

=2×35

=70(平方厘米)

答:长方体的表面积是70平方厘米。

2. 想一想,上面形体(4)(5)的表面积还可以怎么求?

求出前面的面积再乘以4就是上下左右4个面的面积之和,再加上前后面的`面积之和,就是它的表面积。

3. 填空:

(1)长方体的表面积是(2×(9×3+9×2+2×3) )(填算式)。

(2)长方体的表面积是(2×(8×1+8×4+4×1))(填算式)。

(3)长方体的表面积是(2×(1×5+1×5+5×5)或5×5+4×(1×5) )(填算式)。

(4)正方体的表面积是(6×(7×7))(填算式)。

(5)长方体表面积计算公式是(s=2(ah+ab+bh))。

(6)正方体表面积计算公式是(s=6a2)。

4. 一个长方体的长是2厘米,宽3厘米,高6厘米。分别求出它的底面面积,前面面积与左面面积。

解:2×3=6(平方厘米)

2×6=12(平方厘米)

3×6=18(平方厘米)

答:它的底面面积是6平方厘米,前面面积12平方厘米,左面面积是18平方厘米。

5. 长方体的长是5厘米,宽4厘米,高3厘米,它的表面积是多少平方厘米?

解:s=2(ah+ab+bh)

=2×(5×3+5×4+4×3)

=2×(15+20+12)

=2×47

=94(平方厘米)

答:长方体的表面积是94平方厘米。

6. 做一个长15分米,宽4米,高3分米的长方体铁皮油箱,至少需要多少铁皮?

解:4米=40分米

s=2(ah+ab+bh)

=2×(15×3+15×40+40×3)

=2×(45+600+120)

=2×765

=1530(平方分米)

答:长方体的表面积是1530平方分米。

总结:长方体表面积计算公式是s=2(ah+ab+bh),正方体表面积计算公式是s=6a2。

检测目标达成练习:练习册p15

长方体和正方体的表面积2教案篇4

设计说明

1.加强动手操作,促进学生的思维发展。

因为数学知识具有抽象性,所以要多引导学生在操作中思考,培养学生掌握技能技巧,促进学生的思维发展。本节课的教学设计在让学生理解长方体、正方体表面积的意义时,先让学生动手操作,“解剖”长方体和正方体,展示出长方体和正方体各自的6个面。然后通过比较分析,深刻地体会长方体或正方体各自6个面的面积之和就是这个长方体或正方体的表面积。

2.合作探究,实现自主发现。

合作探究是学生学习数学的主要方式之一,它能促进学生对抽象的数学知识的理解。在学生感知了表面积的意义之后,放手让学生在小组内合作交流,自主探究长方体表面积的不同计算方法,然后根据正方体的特征归纳出正方体表面积的计算方法,培养学生的优化思维和求异思维。

课前准备

教师准备ppt课件长方体纸盒

学生准备长方体牙膏盒教学过程

教学过程

⊙猜测质疑,引入新课

师:长方体和正方体在我们的生活中应用得非常广泛,老师也收集到这样两个纸盒(出示两个大小比较接近的长方体纸盒),怎样才能比较出这两个长方体纸盒,谁用的`纸板比较多呢?(学生讨论后汇报)

设计意图:通过比较谁用的纸板比较多,使学生产生拆开纸盒研究长方体表面积的想法,从而主动探究体与面的关系,同时引发学生的争论,使其主动思考,寻求解决问题的方法。

⊙演示操作,形成表象,建立概念

1.感受表面积的意义。

(1)把长方体牙膏盒沿棱剪开并展开,分别用“上”“下”“前”“后”“左”“右”标明6个面,并让学生观察后回答:

①长方体哪几组面的面积相等?

②长方体每个面的长和宽与长方体的长、宽、高有什么关系?

(学生观察后汇报)

师明确:长方体上、下两个面的面积相等,每个面的长和宽就是长方体的长和宽;前、后两个面的面积相等,每个面的长和宽就是长方体的长和高;左、右两个面的面积相等,每个面的长和宽就是长方体的宽和高。

(2)什么叫长方体的表面积?

(板书:长方体6个面的总面积,叫做它的表面积)

设计意图:通过亲自动手操作剪开并展开长方体实物,让学生真正参与获取知识的过程。在实际观察中让学生充分感知并建立表面积的表象,从而发现并归纳出表面积的意义。

2.探究求长方体表面积的计算方法。

(1)回忆。

师:同学们,你们还记得长方形的面积计算公式吗?

预设

生:长方形的面积=长×宽。

(2)议一议。

长方体上、下面的面积=()×();

长方体前、后面的面积=()×();

长方体左、右面的面积=()×()。

(3)总结长方体表面积的计算方法。

方法一长方体的表面积=长×宽×2+长×高×2+宽×高×2,用字母表示为s=2ab+2ah+2bh。

方法二长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为s=(ab+ah+bh)×2。

长方体和正方体的表面积2教案篇5

学习内容:

长方体和正方体的表面积练习(教材26页第11~13题)

学习目标:

1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

2.培养学生分析、解决问题的能力,以及良好的思维品质。

教学重点:

掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题

教学难点:

能灵活地解决一些实际问题

教具运用:

课件

教学过程:

一、复习导入

1.如果告诉了长方体的长、宽、高,怎样求它的表面积?

2. 如果要求正方体的表面积,需要知道什么?怎样求?

3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?

4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

二、课堂作业

完成教材第26页第11~13题。

1.第11题

(1)分析题目的已知条件和问题。

(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?

(3)列式解答

4[86+(83+63)2-11.4]

=4[48+422-11.4]

=4120.6=482.4(元)

答:粉刷这个教室需要花费482.4元。

2.第12题

这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的.面积不能算在表面积里。

分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。

左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。

解:涂黄油漆[40(65-10)+4065+4040]2

=(2200+2600+1600)2=12800(cm2)

涂红油漆40652+40403=5200+4800=10000(cm2)

答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。

3.第13题

提示:把一个长方体从中间截断,就可以分成两个正方体。

让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

三、课堂小结

通过这节课的学习,你有什么收获?还有什么问题?

四、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的表面积(3)

长方体的表面积(长宽+长高+宽高) 2

正方体的表面积边长边长6

长方体和正方体的表面积2教案篇6

教学目标

(一)理解长方体和正方体表面积的意义。

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点

(一)长方体、正方体表面积的意义和计算方法。

(二)确定长方体每一个面的长和宽。

教学用具

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程设计

(一)复习准备

1.口答填空。

(1)长方体有( )个面,一般都是( ),相对的面的( )相等;

(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;

(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。

2.说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)

(二)学习新课

1.长方体和正方体表面积的意义。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。

教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?

学生讨论。(把六个面展开放在一个平面上。)

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

教师:请再说一说什么是长、正方体的表面积。(学生口答。)

教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

2.长方体表面积的计算方法。

(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?

学生四人一组边操作边讨论后归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的`。

教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)

(图像要验证相对的面相等,展示每个面对应的长和宽。)

教师:想一想,长方体的表面积如何计算?

学生讨论后归纳,老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?

学生口答老师板书:(或学生板书,同时其余同学填书上。)

解法1:6×5×2+6×4×2+5×4×2

=60+48+40

=148(厘米2)

解法2:(6×5+6×4+5×4)×2

=(30+24+20)×2

=74×2

=148(厘米2)

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高2.5米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。列式:

4×3+4×2.5×2+3×2.5×2

3.正方体表面积的计算方法。

(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?

学生:一个面的面积乘以6。

教师:用棱长来表示它的表面积。

学生:棱长×棱长×6

(2)试解下面的题。

例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。

请同学们填在书上,一位同学板书:

32×6

=9×6

=54(厘米2)

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)

用学生投影片集体订正。

(三)巩固反馈

1.口答课本p27:1。

2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。 ( )

(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。 ( )

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。( )

(四)课堂总结及课后作业

1.什么是长、正方体的表面积。长、正方体的表面积如何计算。

2.作业:课本p27:3,4,5。

课堂教学设计说明

长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。

教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。

本节新课教学分为三部分。

第一部分教学长、正方体表面积的意义。

第二部分教学长方体表面积的计算方法。

第三部分教学正方体表面积的计算方法。

板书设计

长方体和正方体的表面积2教案篇7

教学目标:

结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

教学重点

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

教学难点

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

教学媒体

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程

一、复习准备。

(一)口答填空。

1.长方体有( )个面,一般都是( ),相对的面的( )相等;

2.正方体有( )个面,它们都是( ),正方形各面的( )相等;

3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

4.这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米。

(二)说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的'表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)

二、学习新课。

(一)长方体和正方体表面积的意义。

1.教师提问:什么叫做面积?

长方体有几个面?正方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)

2.教师明确:这六个面的总面积叫做它的表面积。

3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。

4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

(二)长方体表面积的计算方法

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)

老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

3.练习解答。

做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

长方体和正方体的表面积2教案篇8

同学们好,下面我们来学习“长方体和正方体的表面积。”在没学新课之前你们回忆一下,长方体和正方体的面积怎样求?我们先来复习一下长方形和正方形面积公式,长方形的面积=长x宽,正方形的面积=边长x边长。

这是一个长方体,它是由六个长方形围成的,相对的两个面的面积相等。这是一个正方体,它是由六个正方形围成的,并且六个面都是相等的正方形,那么,什么叫长方体或正方体的表面积呢?

长方体或正方体六个面的总面积,叫做它的表面积。

下面我们来观察长方体,只要我们求出每个面的面积,再把它们相加就可以了。如果把长方体展开,会得到怎样的图形呢?

我们分别展开长方体的'上下面、左右面、前后面,就变成这样一个平面图形,它的上面和下面是两个完全相等的长方形,请你们认真观察,这两个长方形的长和宽分别是长方体的哪条边?分别是长方体的长和宽,那么上下两个面的面积就等于长x宽x2。我们再来观察一下前后面,前后面也是完全一样的长方形,它的长和宽又分别是长方体的哪两条边呢?分别是长方体的长和高,同学们很快就能求出前后面的面积,前后面的面积等于长x高x2。最后再来观察一下左右两个面,它的长和宽又分别是长方体的哪两条边。分别是长方体中的高和宽,同学们很容易就能求出左右面的面积,左右面的面积等于高x宽x2。

现在老师把这个平面图形还原成长方体,你们再仔细观察一下,上面、前面、右面分别和长方体的哪两条边有关系,上面和长方体的长宽有关系.前面和长方体的长高有关系,右面和长方体的高宽有关系、我们只要求出上面、前面、右面的面积,用它们的和再乘2,就求出了长方体的表面积。所以,长方体的表面积=(长x宽十长x高十宽x高)x2,会求长方体的表面积,求正方体的表面积就简单多了,正方体是由六个完全一样的正方形围成的,每个正方形的边长又都是正方体的棱长。用棱长乘棱长先求出一个面的面积,再来乘6就可以了,所以正方体的表面积等于棱长x棱长x6,也可以写成棱长的平方x6。我们掌握了长方体和正方体表面积的求法,就可以解决生活中的实际问题了。

《长方体和正方体的表面积2教案8篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭