数学初一有理数教案5篇
一个全面的教案可以帮助教师在课堂上更好地管理时间,教案的科学设计可以提高学生的知识掌握和应用能力,加分文档网小编今天就为您带来了数学初一有理数教案5篇,相信一定会对你有所帮助。
数学初一有理数教案篇1
学习目标:
1、会进行包括小数或分数的有理数的加减混合运算。
2、熟练地进行有理数加减混合运算,并利用运算律简化运算。
3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。
学习重难点:
1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。
2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
学习过程:
任务一:温故知新
1、完成课本44页习题2、7的第1、2题,写在作业本上。
2、6有理数的加减混合运算》课时练习
一、选择题(共10题)
1、下列关于有理数的加法说法错误的是( )
a、同号两数相加,取相同的符号,并把绝对值相加
b、异号两数相加,绝对值相等时和为0
c、互为相反数的两数相加得0
d、绝对值不等时,取绝对值较小的数的符号作为和的符号
答案:d
解析:解答:d选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的符号作为和的符号
分析:考查有理数的的加法法则
《2、6有理数的.加减混合运算》同步练习
2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?
3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
这10名学生的总体重为多少?10名学生的平均体重为多少?
数学初一有理数教案篇2
?有理数的加法法则》选是九年义务教育华师大版上学期第2章第6节的内容, 本节内容安排两个课时,本课时是本节内容的第一课时。
有理数的加法运算是建立在算术加法运算和有理数意义的基础上展开的,学好有理数的加法运算是学习其他有理数运算,以及后继要学到的实数、代数式、方程、不等式、函数等知识的前提。有理数的加法运算是建构在生产、生活实例上,展现了数学来源于实践,又应用于实践的过程。
本节课的教学目标为:
认知目标:
1、理解有理数加法的意义。
2、理解并掌握有理数加法法则。
3、应用有理数加法法则进行准确运算。
能力目标:
1、让学生体会数形结合思想、转化思想与分类思想。
2、培养学生准确运算能力和归纳总结知识的能力。
情感目标:通过丰富的数学活动培养学生对数学的热爱和树立学习的自信心。
本节课的重点:有理数加法法则的理解和应用。突破策略:
1、利用多媒体手段,借助于动画演示,化抽象为具体。
2、讲清楚探究有理数加法法则的方法和过程。
由于七年级的学生是第一次接触到带有符号的两个数相加,必须克服小学里长期形成的算术加法运算的思维定势,而解决异号两数相加时有关符号和绝对值的问题有一定难度,因此,本节课的难点是对异号两数相加加法法则的理解和应用。
突破策略:
1、精选各种有趣体型,让学生通过训练,尝试成功。
2、利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。
根据弗赖登塔尔的数学教育理论:“数学起源于现实,数学教育的过程是学习‘数学化’的过程,而学生学习数学是一个‘再创造’的过程。”所以本节课我主要采用“引导——发现法”并借助于计算机课件,通过“问题情境——建立模型——解释、应用与拓展”的模式展开教学。
七年级的学生是智力发展的关键年龄,他们活泼好动,注意力易分散,爱发表见解,并希望得到老师的表扬。所以我抓住学生的这一生理特点,努力创造条件和机会,让学生发表见解,发挥学习的主动性;并适当运用多媒体演示,吸引学生的兴趣,使学生的注意力始终集中在课堂上。
?数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设计如下:
第一个环节发现新知,在这个环节里我设置了两个活动。活动一,根据“兴趣是学生最好的老师”我选用学生感兴趣的足球比赛引入课题。让学生通过对得分的观察,体会到如果加法运算仅局限在小学当中的算术加法运算是不够的,从而顺理成章的引入今天的课题:有理数的加法。
活动二:探索交流。美国学者奥苏伯尔称:必要的经验和预备知识,为先行组织者,而学生已经在2、1至2、5中学了有理数的意义,这些都为学生探索法则架起了桥梁作用的组织者,在此基础上,我设置了六个探究活动。即以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为负,向右为正。这样借助数轴帮助学生理解。既渗透了分类思想又渗透了数形结合思想,最后再由学生对整个规律进行总结归纳补充,从而得出了有理数加法法则。
法则得出后,我设置了一个小活动,比比谁聪明,让学生观察法则中1、2用简短的两句话进行概括,教师在充分肯定学生的回答后给出:同号不变值相加,异号取大值相减。在此基础上再让学生更加深入地熟悉法则,教师继续强调符号与绝对值。
这时只能说学生对法则有了初步的了解,为了加深学生对法则的理解,我设置了第二个环节再探新知。整个法则中尤其强调的是符号与绝对值,为能让学生更加直观地认识到这一点,我让他们解决创设情景中的动漫表格的问题,以个别提问的方式让学生通过表格的填写,体会到整个和的组成就是由符号与绝对值两部分,从而体现了本节课的重点与难点,加深了学生对法则的理解。
在此基础上,我设置了第三个环节应用新知,首先我设置了一道例题(1)(—6)+(—8) (2)(—3、4)+4、3 (3)(+1/2)+(—2/3),由于课前有让学生预习,所以例题是由学生自主完成,作完后由基础较薄弱的学生进行板演,对于板演时出现错误的题目,可由学生自行更正,最后师生共同评述。例题以这样的形式完成,可以使得全体学生尤其是学有困难的学生都能达到基本的学习目标,获得成功的喜悦。
紧接着,我设计了练习。课前我按照学习程度均衡的原则,将本班分成a、b、c、d四个小组。我设置了一道抢答题,由组间进行抢答,对于抢答成功的小组给予福娃奖励,最后以福娃个数多的小组获胜,以此激发学生学习的兴趣。
根据七年级学生的年龄特征,为能更大限度地吸引学生的兴趣,我还设置了这样一个活动:男生出题,女生回答;女生出题,男生回答。将整节课推向了高潮。在学生兴趣正浓时,我设置了一个小游戏,玩有理数牌,请同桌间的两个同学,各自抽取一张牌,进行求和比赛,看谁算得又快又准。教师在学生之间巡回参与活动。这样设计符合学生年龄特征的游戏,体现了新课改理论,让学生在“学在玩”在“玩中学”。
设置练习时,除了在形式上做了充分的考虑之外,我还注意到学生的思维是一个循序渐进的过程。所以除了刚才所设置的基础训练之外,我还设置了变式练习。第一题((—5)+( )=—8)以填空的形式出现,如果题目是 ,那么大部分学生马上可以得到—8,所以以这样的形式出现就对学生的解题造成了困难。通过对这道题目的解答,可加深学生对法则的理解,并为紧接着要学的有理数减法作好铺垫,同时也培养了学生发散思维的能力。第2题(一只小狗在一条东西向的跑道上,先走了50米,又走了30米,他现在位于原来位置的哪个方面,与原来位置相跑多少?)与之前的探究活动相呼应,须分四种情况进行讨论。从而培养了学生的分类思想。
为体现数学来源于生活,又服务于生活。我设置了这样一道应用题(星期天,小明与爸爸在安溪中国茶都代售茶叶,爸爸获利120元,而小明却获利-20元,问这一天他们共赚了多少钱?)通过此题,激发学生学习数学的热情。
此节课的教学,可以有多种不同的设计方案、大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计、
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题、但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的、第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会、权衡利弊,我们主张采用第二种教学方法。
总之,整个教学旨在,通过创设问题情境,引导学生进行分类、观察、分析,进而归纳从具体到一般的规律,得出有理数加法法则,在学生的学习过程中,充分让学生感受、体会知识的产生和发展过程,注重促使学生积极思维,主动探索,用于发现。
数学初一有理数教案篇3
《1.2有理数》教学设计
?学习目标】:
1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准 与集合的含义;
3、体验分类是数学上常用的处理问题方法;
?学习重点】:正确理解有理数的概念
?学习难点】:正确理解分类的标准和按照一定标准分类
《1.2.1有理数》同步练习含答案
5.对-3.14,下面说法正确的是(b)
a.是负数,不是分数
b.是负数,也是分数
c.是分数,不是有理数
d.不是分数,是有理数
《1.2有理数》同步练习含答案解析
8.如果a与1互为相反数,则|a|=( )
a.2 b.﹣2 c.1 d.﹣1
?考点】绝对值;相反数.
?分析】根据互为相反数的定义,知a=﹣1,从而求解.
互为相反数的定义:只有符号不同的两个数叫互为相反数.
?解答】解:根据a与1互为相反数,得
a=﹣1.
所以|a|=1.
故选c.
?点评】此题主要是考查了相反数的概念和绝对值的性质.
9.若|1﹣a|=a﹣1,则a的`取值范围是( )
a.a>1 b.a≥1 c.a
?考点】绝对值.
?分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.
?解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故选b.
?点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.
数学初一有理数教案篇4
教学目标:
知识能力:
理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:
经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:
通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
会把所给的各数填入它所属于的集合里
教学方法:
问题引导法
学习方法:
自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的`做出下面的题目。
1.有下面这些数:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数
2._______和_________统称为分数
3.__________统称为有理数
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、2中,整数:、分数:__________;正整数:__________、负整数:__________、正分数:__________、负分数:__________.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.b
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是()
a.0是最小的正整数
b.0是最小的有理数
c.0既不是整数也不是分数
d.0既不是正数也不是负数
5、下列说法正确的有()
(1)整数就是正整数和负整数
(2)零是整数,但不是自然数
(3)分数包括正分数和负分数
(4)正数和负数统称为有理数
(5)一个有理数,它不是整数就是分数
五、总结与反思:
通过本节课的学习,你有什么收获?
六、作业:
必做题:课本14页:1、9题
数学初一有理数教案篇5
教学目标:
知识与技能:
1.进一步熟练掌握有理数加法的法则。
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。
过程与方法:
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
情感、态度与价值观:
1.培养学生的分类与归纳能力。
2.强化学生的数形结合思想。
3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。
教学重点:
加法运算律的灵活运用,解决实际问题。
教学难点:
能运用加法运算律简化运算,加法在实际中的应用。
教学方法:
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。
教学准备:
1.复习有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的`数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8
教学过程:
(一)情境引入,提出问题:
鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。
1.叙述有理数的加法法则.
2.小学学过的加法的运算律是不是也可以扩充到有理数范围?
3.计算下列各组数的值,并观察寻找规律。
(1) (-7)+(-5) (-5)+(-7)
(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]
(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]
结论:在有理数运算中,加法交换律、结合律仍然成立。
(二)活动探究,猜想结论:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示:a+b=b+a
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.
在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示:(a+b)+c=a+(b+c)
这里a、b、c表示任意三个有理数.
(三)验证结论:
例1计算16+(-25)+24+(-32)
(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)
解:16+(-25)+24+(-32)
=[16+24]+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则)
=-17 (异号相加法则)
例2计算:31+(-28)+28+69
(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)
解:31+(-28)+28+69
=31+69+[(-28)+28]
=100+0
=100
《2.4.1有理数的加法法则》同步练习
3.若两个有理数的和为负数,那么这两个有理数()
a.一定都是负数b.一正一负,且负数的绝对值大
c.一个为零,另一个为负数d.至少有一个是负数
4.两个有理数的和()
a.一定大于其中的一个加数
b.一定小于其中的一个加数
c.和的大小由两个加数的符号而定
d.和的大小由两个加数的符号与绝对值而定
5.如果a,b是有理数,那么下列各式中成立的是()
a.如果a0
b.如果a>0,b0
c.如果a>0,b
d.如果a>0,b|b|,那么a+b>0
《2.4.2有理数的加法运算律》测试
7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比()
a.增产20 kg b.减产20 kg c.增长120 kg d.持平
8.一口井水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.2米;第五次往上爬了0.55米,没有下滑;第六次往上爬了0.48米,此时蜗牛有没有爬出井口?请通过列式计算加以说明