数学必修3的教学计划5篇

时间:2022-10-28 12:03:49 分类:工作计划

大家在制定教学计划之前一定要结合自身的教学能力哦,为了让自己的教学结果更好,我们要认真写教学计划,以下是加分文档网小编精心为您推荐的数学必修3的教学计划5篇,供大家参考。

数学必修3的教学计划5篇

数学必修3的教学计划篇1

一、目标要求

1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。

3.本期的专题选讲务求实效。

4.继续培养学的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。

二、教学措施:

1、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。

2、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。

3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

数学必修3的教学计划篇2

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

二、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

三、教学内容

第一章集合与函数概念

1.通过实例,了解集合的含义,体会元素与集合的属于关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

3.理解集合之间包含与相等的含义,能识别给定集合的子集。

4.在具体情境中,了解全集与空集的含义。

5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

7.能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

10.通过具体实例,了解简单的分段函数,并能简单应用。

11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

12.学会运用函数图象理解和研究函数的性质。

课时分配(14课时)

第二章基本初等函数(i)

1.通过具体实例,了解指数函数模型的实际背景。

2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

课时分配(15课时)

第三章函数的应用

1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

课时分配(8课时)

3.1.1

方程的根与函数的零点

约1课时

10月25日

3.1.2

用二分法求方程的近似解

约2课时

10月26日27日

3.2.1

几类不同增长的函数模型

约2课时

10月30日

|

11月3日

3.2.2

函数模型的应用实例

约2课时

小结

约1课时

考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

数学必修3的教学计划篇3

一、教学目标:

1、知识与技能

⑴ 理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析;

⑵ 基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序.

2、过程与方法

在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤.

3、情感与价值观

⑴ 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献.

⑵ 在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力.

二、教学重点、难点:

重点:理解辗转相除法与更相减损术求最大公约数的方法.

难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言.

三、教学过程:

(一)创设情景、导入课题

1.研究一个实际问题的算法,主要从哪几方面展开?

算法步骤、程序框图和编写程序三方面展开.

2.在程序框图中算法的基本逻辑结构有哪几种?

顺序结构、条件结构、循环结构

3.在程序设计中基本的算法语句有哪几种?

输入语句、输出语句、赋值语句、条件语句、循环语句

4.思考1:18与30的最大公约数是多少?你是怎样得到的`?

5. 思考2:对于8251与6105这两个数,它们的最大公约数是多少?你是怎样得到的?

由于它们公有的质因数较大,利用上述方法求最大公约数就比较困难.有没有其它的方法可以较简单的找出它们的最大公约数呢?

(板书课题)

(二)师生互动、探究新知

1. 辗转相除法

思考3:注意到8251=6105×1+2146,那么8251与6105这两个数的公约数和6105与2146的公约数有什么关系?

我们发现6105=2146×2+1813,同理,6105与2146的公约数和2146与1813的公约数相等.

思考4:重复上述操作,你能得到8251与6105这两个数的最大公约数吗?

6105=2146×2+1813

2146=1813×1+333

1813=333×5+148

333=148×2+37

148=37×4+0

以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的.

利用辗转相除法求最大公约数的步骤如下:

第一步:用较大的数m除以较小的数n得到一个商 和一个余数 ;

第二步:若 =0,则n为m,n的最大公约数;若 ≠0,则用除数n除以余数 得到一个商 和一个余数 ;

第三步:若 =0,则 为m,n的最大公约数;若 ≠0,则用除数 除以余数 得到一个商 和一个余数 ;

……

依次计算直至 =0,此时所得到的 即为所求的最大公约数.

思考5:你能把辗转相除法编成一个计算机程序吗?

第一步,给定两个正整数m,n(m>n).

第二步,计算m除以n所得的余数r.

第三步,m=n,n=r.

第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.

input m,n

do

r=m mod n

m=n

n=r

loop until r=0

print m

end

数学必修3的教学计划篇4

一、指导思想:

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

二、基本情况分析:

1、4班共人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。xx5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约人,中等生约xx人,中下生约xx人,差生约xx人。

2、4班在初中升入高中的升学考试中,数学成绩在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分为xx,最低分为xx。

5班在初中升入高中的升学考试中,数学成绩在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分为xx,最低分为xx。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

三、教材分析:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

四、教学要求:

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

数学必修3的教学计划篇5

一、教学思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书•数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1.激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2.注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3.加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4.抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5.自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6.重视数学应用意识及应用能力的培养。

俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。

《数学必修3的教学计划5篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭